Процессы горения с молекулярно кинетической теории газов. Основные положения молекулярно-кинетической теории. Агрегатное состояние вещества

Содержание статьи

МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ – раздел молекулярной физики, изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами), из которых состоит вещество. Считается, что частицы вещества находятся в непрерывном, беспорядочном движении и это их движение воспринимается как тепло.

До 19 в. весьма популярной основой учения о тепле была теория теплорода или некоторой жидкой субстанции, перетекающей от одного тела к другому. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Понятие об атомах долго казалось ненужным для теории тепла, однако многие ученые уже тогда интуитивно связывали тепло с движением молекул. Так, в частности, думал русский ученый М.В.Ломоносов . Прошло немало времени, прежде чем молекулярно-кинетическая теория окончательно победила в сознании ученых и стала неотъемлемым достоянием физики.

Многие явления в газах, жидкостях и твердых телах находят в рамках молекулярно-кинетической теории простое и убедительное объяснение. Так давление , оказываемое газом на стенки сосуда, в котором он заключен, рассматривается как суммарный результат многочисленных соударений быстро движущихся молекул со стенкой, в результате которых они передают стенке свой импульс. (Напомним, что именно изменение импульса в единицу времени приводит по законам механики к появлению силы, а сила, отнесенная к единице поверхности стенки, и есть давление). Кинетическая энергия движения частиц, усредненная по их огромному числу, определяет то, что принято называть температурой вещества.

Истоки атомистической идеи, т.е. представления о том, что все тела в природе состоят из мельчайших неделимых частиц-атомов, восходят еще к древнегреческим философам – Левкиппу и Демокриту. Более двух тысяч лет назад Демокрит писал: «…атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля». Решающий вклад в развитие молекулярно-кинетической теории был внесен во второй половине 19 в. трудами замечательных ученых Дж.К.Максвелла и Л.Больцмана , которые заложили основы статистического (вероятностного) описания свойств веществ (главным образом, газов), состоящих из огромного числа хаотически движущихся молекул. Статистический подход был обобщен (по отношению к любым состояниям вещества) в начале 20 в. в трудах американского ученого Дж.Гиббса , который считается одним из основоположников статистической механики или статистической физики. Наконец, в первые десятилетия 20 в. физики поняли, что поведение атомов и молекул подчиняется законам не классической, а квантовой механики. Это дало мощный импульс развитию статистической физики и позволило описать целый ряд физических явлений, которые ранее не поддавались объяснению в рамках обычных представлений классической механики.

Молекулярно-кинетическая теория газов.

Каждая молекула, летящая к стенке, при столкновении с ней передает стенке свой импульс. Поскольку скорость молекулы при упругом столкновении со стенкой меняется от величины v до –v , величина передаваемого импульса равна 2mv . Сила, действующая на поверхность стенки D S за время D t , определяется величиной полного импульса, передаваемого всеми молекулами достигнувшим стенки за этот промежуток времени, т.е. F = 2mv n c D S /D t , где n c определено выражением (1). Для величины давления p = F /D S в этом случае находим: p = (1/3)nmv 2.

Для получения окончательного результата можно отказаться от предположения об одинаковой скорости молекул, выделив независимые группы молекул, каждая из которых имеет свою приблизительно одинаковую скорость. Тогда средняя величина давления находится усреднением квадрата скорости по всем группам молекул или

Это выражение можно представить также в виде

Этой формуле удобно придать другой вид, умножив числитель и знаменатель под знаком квадратного корня на число Авогадро

N a = 6,023·10 23 .

Здесь M = mN A – атомная или молекулярная масса, величина R = kN A = 8,318·10 7 эрг называется газовой постоянной.

Средняя скорость молекул в газе даже при умеренных температурах оказывается очень большой. Так, для молекул водорода (H 2) при комнатной температуре (T = 293K) эта скорость равна около 1900 м/c , для молекул азота в воздухе – порядка 500 м/с. Скорость звука в воздухе при тех же условиях равна 340 м/с.

Учитывая, что n = N /V , где V – объем, занимаемый газом, N – полное число молекул в этом объеме, легко получить следствия из (5) в виде известных газовых законов. Для этого полное число молекул представляется в виде N = vN A , где v – число молей газа, и уравнение (5) принимает вид

(8) pV = vRT ,

которое носит название уравнения Клапейрона – Менделеева.

При условии T = const давление газа меняется обратно пропорционально занимаемому им объему (закон Бойля – Мариотта).

В замкнутом сосуде фиксированного объема V = const давление меняется прямо пропорционально изменению абсолютной температуры газа Т . Если газ находится в условиях, когда постоянным сохраняется его давление p = const, но изменяется температура (такие условия можно осуществить, например, если поместить газ в цилиндр, закрытый подвижным поршнем), то объем, занимаемый газом, будет меняться пропорционально изменению его температуры (закон Гей-Люссака).

Пусть в сосуде есть смесь газов, т.е. имеются несколько разных сортов молекул. В этом случае величина импульса, передаваемого стенке молекулами каждого сорта, не зависит от наличия молекул других сортов. Отсюда следует, что давление смеси идеальных газов равно сумме парциальных давлений, которые создавал бы каждый газ в отдельности, если бы занимал весь объем. В этом состоит еще один из газовых законов – известный закон Дальтона .

Длина свободного пробега молекул. Одним из первых, кто еще в 1850-х дал разумные оценки величины средней тепловой скорости молекул различных газов, был австрийский физик Клаузиус. Полученные им непривычно большие значения этих скоростей сразу же вызвали возражения. Если скорости молекул действительно так велики, то запах любого пахучего вещества должен был бы практически мгновенно распространяться из одного конца замкнутого помещения в другой. На самом деле распространение запаха происходит очень медленно и осуществляется, как теперь известно, посредством процесса так называемой диффузии в газе. Клаузиус, а затем и другие исследователи, сумели дать убедительное объяснение этому и другим процессам переноса в газе (таким как теплопроводность и вязкость) с помощью понятия средней длины свободного пробега молекул, т.е. среднего расстояния, которое пролетает молекула от одного столкновения до другого.

Каждая молекула в газе испытывает очень большое число столкновений с другими молекулами. В промежутке между столкновениями молекулы движутся практически прямолинейно, испытывая резкие изменения скорости лишь в момент самого столкновения. Естественно, что длины прямолинейных участков на пути молекулы могут быть различными, поэтому имеет смысл говорить лишь о некоторой средней длине свободного пробега молекул.

За время D t молекула проходит сложный зигзагообразный путь, равный v D t . Изломов траектории на этом пути столько, сколько произошло столкновений. Пусть Z означает число столкновений, которое испытывает молекула в единицу времени Средняя длина свободного пробега равна тогда отношению длины пути N 2, например, a » 2,0·10 –10 м. В таблице 1 приведены рассчитанные по формуле (10) значения l 0 в мкм (1мкм = 10 –6 м) для некоторых газов при нормальных условиях (p = 1атм, T =273K). Эти значения оказываются примерно в 100–300 раз больше собственного диаметра молекул.

Что такое молекулярно-кинетическая теория

Определение

Молекулярно-кинетическая теория (МКТ) -- раздел молекулярной физики, который стоится на изучении свойств вещества основываясь на их внутреннем молекулярном строении.

Основной постулат МКТ: вещество состоит из молекул, которые непрерывно хаотично движутся и взаимодействуют между собой по определенным законам. Движение молекул воспринимается как тепловое. Многие явления, происходящие в газах, жидкостях или твердых телах находят объяснения с точки зрения МКТ. Так, например, давление производимое газом на стенки сосуда объясняется как результат многочисленных соударений молекул газа на стенки сосуда. При этом молекулы передают стенкам свой импульс. Усредненная кинетическая энергия частиц определяет такой макропараметр как температура.

МКТ и статистическая физика

Молекулярно-кинетическая теория целиком опирается на статистические методы. Поэтому она часто именуется статистической физикой.

Определение

Статистической физикой называют раздел физики, в котором изучают макроскопические свойства систем, состоящих из очень большого числа частиц (молекул, атомов, электронов), через свойства этих частиц и взаимодействие между ними.

Статистическая физика рассматривает системы, находящиеся в равновесном состоянии (равновесная статистическая физика) и неравновесных состояниях физическая кинетика.

Как строится такая физика? В отличие от термодинамики она исходит не из общих принципов, а из модели молекулярного строения рассматриваемого объекта. Опираясь на механику (атомы рассматриваются как механические системы) и статистику она выводит затем те или иные термодинамические закономерности. Главное ее достоинство - большая глубина объяснений, наблюдаемых свойств и явлений. Чистая ("феноменологическая") термодинамика описывает внутренние свойства тел, не анализируя их строения. В чистой термодинамике, например, отсутствует понятие атома. Статистическая физика, наоборот, начинает изучение явлений с описания строения тел. Она, может быть, не занимается подробным описанием атомов, однако атомы, их движение, их взаимодействие являются основными понятиями статистической физики, на которых строится модель. Эта модель в той или иной мере упрощает, что ведет к ограниченности выводов, получаемых на ее основе.

Статистические закономерности

Поведение систем, состоящих из большого числа частиц, определяется статистическими закономерностями, которые существенно отличаются от законов механики. Поведение отдельных частиц, входящих в систему, например, траектория частицы, при статистическом описании системы оказывается несущественным. Поэтому изучение свойств системы сводится к отысканию средних значений физических величин, характеризующих состояние системы как целого. Существенное отличие систем, которые подчиняются статистическим законам, состоит в том, что поведение и свойства в значительной степени не зависят от их начального состояния.

Связь между динамическими закономерностями (описывающими движения отдельных частиц) и статистическим закономерностями проявляется в том, что свойства макроскопической системы определяется законами движения отдельных частиц.

В статистической физике используют эргодическую гипотезу. Согласно этой гипотезе предполагается, что в термодинамически равновесной системе средние по времени значения физических величин, характеризующие систему равны их средним статистическим значениям, то есть средним статистическим по равномерному распределению фазовых точек в тонком слое энергии, рассчитанным в один и тот же произвольный момент времени.

В классической статистической физике считается, что в термодинамически равновесной системе действует закон равномерного распределения энергии:

на каждую степень свободы частицы, образующих систему, в среднем, приходится одинаковая кинетическая энергия, равная:

где $i$- число степеней свободы молекулы, k- постоянная Больцмана, Т - термодинамическая температура.

При колебательном движении частица имеет как кинетическую, так и потенциальную энергию. Если колебания гармонические, то кинетическая и потенциальная энергии равны в среднем друг другу. Поэтому на одну колебательную степень свободы приходится в среднем энергия равная:

Пример 1

В качестве одного из примеров применения молекулярно-кинетической теории можно рассмотреть вывод выражения для давления газа.

Рассмотрим давление идеального газа в состоянии равновесия.

Давление определяется силой $\triangle F$, с которой газ давит на единицу площади $\triangle S$ стенки сосуда:

Сила есть импульс, передаваемый от тела к телу в секунду:

\[\triangle \overrightarrow{F}=\frac{\triangle \overrightarrow{p}}{\triangle t}(1.2)\]

Значит, чтобы найти давление газа, нужно найти, какой импульс передаёт газ единице площади стенки сосуда в секунду. Займемся этим расчётом. Будем считать, что соударение отдельной молекулы со стенкой сосуда подчиняется законам упругого столкновения: молекула отскакивает от стенки с первоначальным по модулю импульсом и угол ее падения равен углу отражения (рис. 1).

В этом случае от молекулы стенке передаётся только х - составляющая импульса:

\[\triangle p_x=mv_x-\left(-mv_x\right)=2mv_x\ (1.3)\]

Движение молекул в направлении других осей координат при передаче импульса выбранной стенке не существенно, и можно считать, что молекулы движутся только по оси х. (Движение по другим осям будет учтено в конце расчёта.) Найдем число столкновений молекул о площадку с единичной площадью стенки в секунду, если скорость молекулы равна $v_x$. Легко понять, что это число pавно числу молекул с данной скоростью, находящихся в цилиндре с основанием в единицу площади и высотой, численно равной $v_x$.(рис. 2) В самом деле, молекулы вне данного цилиндpа пpосто не попадут в течение секунды на заданную единицу площади стенки (или не долетят до стенки, или ударятся о стенку не в том месте).

Наоборот, все молекулы, попадающие в цилиндр, проходя за секунду путь, равный $v_x$, попадут на данную площадь стенки сосуда. Обозначим число молекул, обладающих заданной скоростью $v_x$ и находящихся в единице объема газа, через $n_{vx}$ Тогда число молекул, попадающих в цилиндp, или число молекул, удаpяющихся о стенку со скоpостью $v_x$ равно: $v_xn_{vx}$.

Эти молекулы передают стенке импульс, равный:

\[{2mv_xv_xn}_{vx}=2mv^2_xn_{vx}\left(1.4\right)\]

Полный же импульс, который получает стенка на единице площади, т.е. давление газа, определяется суммированием таких выражений по всем возможным положительным значениям скорости молекулы:

Обозначим через n полное число молекул в единице объема газа. Половина из них летит к стенке (имеет скорость $v_x>0$). Перепишем формулу (1.5) в виде:

и учтем, что выражение $\frac{\sum\limits_{v_x>0}{v^2_xn_{vx}}}{\frac{n}{2}}$представляет собой средний квадрат скорости молекулы. Средние величины будем обозначать скобками $$. Следовательно, формулу (1.6) можно переписать так:

Наконец, учтем, что скоpости молекул газа pаспpеделены по напpавлениям pавномеpно (газ изотpопен), и, следовательно,

\[ =++=3 (1.8)\]

Поэтому окончательно формулу для давления газа представим в виде:

Итак, давление идеального газа в состоянии равновесия равно двум третям произведения средней кинетической энергии поступательного движения молекулы газа на число молекул в единице объема газа.

Пример 2

Задание: Кислород находится в сосуде при T=300K. Определить среднюю энергию вращательного движения молекул.

Решение: Кислород имеет в молекуле 2 атома, следовательно у него 2 вращательные степени свободы, для вычисления энергии используем формулу (2.1) при i=2:

\[=\frac{i}{2}kT=kT(2.1)\]

Проведем вычисления:

\[ Ответ: Средняя энергия вращательного движения молекул кислорода равна $4,14\cdot 10^{-21}Дж$.

Данный видеоурок посвящен теме «Основные положения МКТ. Строение вещества. Молекула». Здесь вы узнаете, что изучает молекулярно-кинетическая теория (МКТ) в физике. Познакомитесь с тремя основными положениями, на которых базируется МКТ. Узнаете, чем определяются физические свойства вещества и что представляют собой атом и молекула.

Для начала давайте вспомним все предыдущие разделы физики, которые мы изучали, и поймём, что всё это время мы рассматривали процессы, происходящие с макроскопическими телами (или объектами макромира). Теперь же мы будем изучать их строение и процессы, протекающие внутри них.

Определение. Макроскопическое тело - тело, состоящее из большого числа частиц. Например: машина, человек, планета, бильярдный шар…

Микроскопическое тело - тело, состоящее из одной или нескольких частиц. Например: атом, молекула, электрон… (рис. 1)

Рис. 1. Примеры микро- и макрообъектов соответственно

Определив таким образом предмет изучения курса МКТ, следует теперь поговорить об основных целях, которые ставит перед собой курс МКТ, а именно:

  1. Изучение процессов, происходящих внутри макроскопического тела (движение и взаимодействие частиц)
  2. Свойства тел (плотность, масса, давление (для газов)…)
  3. Изучение тепловых явлений (нагревание-охлаждение, изменения агрегатных состояний тела)

Изучение этих вопросов, которое будет проходить на протяжении всей темы, начнётся сейчас с того, что мы сформулируем так называемые основные положения МКТ, то есть некоторые утверждения, истинность которых уже давно не подвергается сомнениям, и, отталкиваясь от которых, будет строиться весь дальнейший курс.

Разберём их по очереди:

Все вещества состоят из большого количества частиц - молекул и атомов.

Определение. Атом - мельчайшая частица химического элемента. Размеры атомов (их диаметр) имеет порядок см. Стоит отметить, что различных типов атомов, в отличие от молекул, относительно немного. Все их разновидности, которые на сегодняшний день известны человеку, собраны в так называемой таблице Менделеева (см. рис. 2)

Рис. 2. Периодическая таблица химических элементов (по сути разновидностей атомов) Д. И. Менделеева

Молекула - структурная единица вещества, состоящая из атомов. В отличие от атомов, они больше и тяжелее последних, а главное, они обладают огромным разнообразием.

Вещество, молекулы которого состоят из одного атома, называются атомарными , из большего количества - молекулярными . Например: кислород, вода, поваренная соль () - молекулярные; гелий серебро (He, Ag) - атомарные.

Причём следует понимать, что свойства макроскопических тел будут зависеть не только от количественной характеристики их микроскопического состава, но и от качественной.

Если в строении атомов вещество имеет какую-то определённую геометрию (кристаллическую решётку ), или же, наоборот, не имеет, то этим телам будут присущи различные свойства. Например, аморфные тела не имеют строгой температуры плавления. Самый известный пример - это аморфный графит и кристаллический алмаз. Оба вещества состоят из атомов углерода.

Рис. 3. Графит и алмаз соответственно

Таким образом «из скольких, в каком взаимном расположении и каких атомов и молекул состоит вещество?» - первый вопрос, ответ на который приблизит нас к пониманию свойств тел.

Все упомянутые выше частицы находятся в непрерывном тепловом хаотическом движении.

Так же, как и в рассматриваемых выше примерах, важно понимание не только количественных аспектов этого движения, но и качественных для различных веществ.

Молекулы и атомы твёрдых тел совершают лишь небольшие колебания относительно своего постоянного положения; жидких - также совершают колебания, но из-за больших размеров межмолекулярного пространства иногда меняются местами друг с другом; частички газа, в свою очередь, практически не сталкиваясь, свободно перемещаются в пространстве.

Частицы взаимодействуют друг с другом.

Взаимодействие это носит электромагнитный характер (взаимодействия ядер и электронов атома) и действует в обе стороны (как притягивание, так и отталкивание).

Здесь: d - расстояние между частицами; a - размеры частиц (диаметр).

Впервые понятие «атом» было введено древнегреческим философом и естествоведом Демокритом (рис. 4). В более поздний период активно задался вопросом о структуре микромира русский учёный Ломоносов (рис. 5).

Рис. 4. Демокрит

Рис. 5. Ломоносов

На следующем занятии мы введём методы качественного обоснования основным положениям МКТ.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Elementy.ru ().
  2. Samlib.ru ().
  3. Youtube ().

Домашнее задание

  1. *Благодаря какой силе возможно сделать эксперимент по измерению размеров молекулы масла, показанный в видеоуроке?
  2. Почему молекулярно-кинетическая теория не рассматривает органические соединения?
  3. Почему даже очень маленькая песчинка песка является объектом макромира?
  4. Силы преимущественно какой природы действуют на частицы со стороны других частиц?
  5. Как определить, является ли некая химическая структура химическим элементом?

Любое вещество рассматривается физикой как совокупность мельчайших частиц: атомов, молекул и ионов. Все эти частицы находятся в непрерывном хаотическом движении и взаимодействуют друг с другом с помощью упругих столкновений.

Атомическая теория - основа молекулярно-кинетической теории

Демокрит

Молекулярно-кинетическая теория зародилась в Древней Греции примерно 2500 лет назад. Её фундаментом считается атомическая гипотеза , авторами которой были древнегреческий философ Левкипп и его ученик, древнегреческий учёный Демокрит из города Абдеры.

Левкипп

Левкипп и Демокрит предполагали, что все материальные вещи состоят из неделимых мельчайших частиц, которые называются атомами (от греческого ἄτομος - неделимый ). А пространство между атомами заполнено пустотой. Все атомы имеют размер и форму, а также способны двигаться. Сторонниками этой теории в средние века были Джордано Бруно , Галилей , Исаак Бекман и другие учёные. Основы молекулярно-кинетической теории были заложены в труде «Гидродинамика», опубликованном в 1738 г. Его автором был швейцарский физик, механик и математик Даниил Бернулли .

Основные положения молекулярно-кинетической теории

Михаил Васильевич Ломоносов

Ближе всего к современной физике оказалась теория атомного строения вещества, которую в XVIII веке развил великий русский учёный Михаил Васильевич Ломоносов . Он утверждал, что все вещества состоят из молекул , которые он называл корпускулами . А корпускулы, в свою очередь, состоят из атомов . Теория Ломоносова получила название корпускулярной .

Но как оказалось, атом делится. Он состоит из положительно заряженного ядра и отрицательных электронов. А в целом он электрически нейтрален.

Современная наука называет атомом наименьшую часть химического элемента, являющуюся носителем его основных свойств. Связанные межатомными связями, атомы образуют молекулы. В молекуле могут быть один или нескольких атомов одинаковых или различных химических элементов.

Все тела состоят из огромного количества частиц: атомов, молекул и ионов. Эти частицы непрерывно и хаотично движутся. Их движение не имеет какого-либо определённого направления и называется тепловым движением . Во время своего движения частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Наблюдать молекулы и атомы невооружённым глазом мы не можем. Но мы можем видеть результат их действий.

Подтверждением основных положений молекулярно-кинетической теории являются: диффузия , броуновское движение и изменение агрегатных состояний веществ .

Диффузия

Диффузия в жидкости

Одно из доказательств постоянного движения молекул - явление диффузии .

В процессе движения молекулы и атомы одного вещества проникают между молекулами и атомами другого вещества, соприкасающегося с ним. Точно так же ведут себя молекулы и атомы второго вещества по отношению к первому. И через некоторое время молекулы обоих веществ равномерно распределяются по всему объёму.

Процесс проникновения молекул одного вещества между молекул другого называется диффузией . С явлением диффузии мы сталкиваемся дома каждый день, когда опускаем пакетик чая в стакан с кипятком. Мы наблюдаем, как бесцветный кипяток меняет свой цвет. Бросив в пробирку с водой несколько кристалликов марганца, можно увидеть, что вода окрасится в розовый цвет. Это также диффузия.

Число частиц в единице объёма называют концентрацией вещества. При диффузии молекулы перемещаются из тех частей вещества, где концентрация выше, в те части, где она меньше. Перемещение молекул называют диффузионным потоком . В результате диффузии концентрации в различных частях веществ выравниваются.

Диффузию можно наблюдать в газах, жидкостях и твёрдых телах. В газах она происходит с большей скоростью, чем в жидкостях. Мы знаем, как быстро распространяются запахи в воздухе. Гораздо медленнее окрашивается жидкость в пробирке, если в неё капнуть чернил. А если мы положим на дно ёмкости с водой кристаллы поваренной соли и не перемешаем, то пройдёт не один день, прежде чем раствор станет однородным.

Диффузия происходит и на границе соприкасающихся металлов. Но её скорость в этом случае очень мала. Если покрыть медь золотом, то при комнатной температуре и атмосферном давлении золото приникнет в медь всего лишь на несколько микронов через несколько тысяч лет.

Свинец из слитка, положенного под грузом на золотой слиток, проникнет в него всего лишь на глубину в 1 см за 5 лет.

Диффузия в металлах

Скорость диффузии

Скорость диффузии зависит от площади поперечного сечения потока, разности концентраций веществ, разности их температур или зарядов. Через стержень диаметром в 2 см тепло распространяется в 4 раза быстрее, чем через стержень диаметром в 1 см. Чем выше разность температур веществ, тем выше скорость диффузии. При тепловой диффузии её скорость зависит от теплопроводности материала, а в случае потока электрических зарядов - от электропроводности .

Закон Фика

Адольф Фик

В 1855 г. немецкий физиолог Адольф Евгений Фик сделал первое количественное описание процессов диффузии:

где J - плотность диффузионного потока вещества,

D - коэффициент диффузии,

C - концентрация вещества.

Плотность диффузионного потока вещества J [см -2 · s -1 ] пропорциональна коэффициенту диффузии D [см -2 · s -1 ] и градиенту концентрации, взятому с противоположным знаком.

Это уравнение называют первым уравнением Фика .

Диффузия, в результате которой концентрации веществ выравниваются, называется нестационарной диффузией . При такой диффузии градиент концентрации изменяется со временем. А в случае стационарной диффузии этот градиент остаётся постоянным.

Броуновское движение

Роберт Броун

Открыл это явление шотландский ботаник Роберт Броун в 1827 г. Изучая под микроскопом взвешенные в воде цитоплазматические зёрна, выделенные из клеток пыльцы североамериканского растения Clarkia pulchella , он обратил внимание на мельчайшие твёрдые крупинки. Они дрожали и медленно передвигались без всякой видимой причины. Если температура жидкости повышалась, скорость частиц возрастала. Так же происходило, когда уменьшался размер частиц. А если их размер увеличивался, понижалась температура жидкости или увеличивалась её вязкость, движение частиц замедлялось. И эти удивительные «танцы» частиц можно было наблюдать бесконечно долго. Решив, что причина этого движения в том, что частицы живые, Броун заменил зёрна мелкими частицами угля. Результат оказался таким же.

Броуновское движение

Чтобы повторить опыты Броуна достаточно иметь самый обычный микроскоп. Размер молекул слишком мал. И рассмотреть их таким прибором невозможно. Но если мы подкрасим акварельной краской воду в пробирке, а затем посмотрим на неё в микроскоп, то увидим крошечные окрашенные частицы, которые беспорядочно двигаются. Это не молекулы, а частицы краски, взвешенные в воде. И двигаться их заставляют молекулы воды, которые ударяют их со всех сторон.

Так ведут себя все видимые в микроскоп частицы, находящиеся во взвешенном состоянии в жидкостях или газах. Их беспорядочное движение, вызванное тепловым движением молекул или атомов, называется броуновским движением . Броуновская частица непрерывно подвергается ударам со стороны молекул и атомов, из которых состоят жидкости и газы. И это движение не прекращается.

Но в броуновском движении могут участвовать частицы размером до 5 мкм (микрометров). Если их размер больше, они неподвижны. Чем меньше размер броуновской частицы, тем быстрее она движется. Частицы менее 3 мкм двигаются поступательно по всем сложным траекториям или вращаются.

Сам Броун не смог объяснить открытое им явление. И лишь в XIX веке учёные нашли ответ на этот вопрос: движение броуновских частиц вызвано воздействием на них теплового движения молекул и атомов.

Три состояния вещества

Молекулы и атомы, из которых состоит вещество, не только находятся в движении, но и взаимодействуют друг с другом, взаимно притягиваясь или отталкиваясь.

Если расстояние между молекулами сравнимо с их размерами, то они испытывают притяжение. Если же оно становится меньше, то начинает преобладать сила отталкивания. Этим объясняется сопротивляемость физических тел деформации (сжатию или растяжению).

Если тело сжимать, то расстояние между молекулами уменьшается, и силы отталкивания будут стараться вернуть молекулы в первоначальное состояние. При растяжении деформации тела буду мешать силы притяжения между молекулами.

Молекулы взаимодействуют не только внутри одного тела. Опустим в жидкость кусочек ткани. Мы увидим, что он намокнет. Это объясняется тем, что молекулы жидкости притягиваются к молекулам твёрдых тел сильнее, чем друг другу.

Каждое физическое вещество в зависимости от температур и давлений может быть в трёх состояниях: твёрдом, жидком или газообразном . Они называются агрегатными .

В газах расстояние между молекулами велико. Поэтому силы притяжения между ними настолько слабы, что они совершают хаотическое и практически свободное движение в пространстве. Направление своего движения они меняют, ударяясь друг о друга или о стенки сосудов.

В жидкостях молекулы расположены ближе одна к другой, чем в газе. Силы притяжения между ними больше. Молекулы в них движутся уже не свободно, а хаотично колеблются возле положения равновесия. Но они способны перескакивать в направлении действия внешней силы, меняясь местами друг с другом. Результатом этого является течение жидкости.

В твёрдых телах силы взаимодействия между молекулами очень велики из-за близкого расстояния между ними. Притяжение соседних молекул они преодолеть не могут, поэтому способны совершать только колебательные движения около положения равновесия.

Твёрдые тела сохраняют объём и форму. Жидкость формы не имеет, она всегда принимает форму сосуда, в котором находится в данный момент. Но её объём при этом сохраняется. По-другому ведут себя газообразные тела. Они легко меняют и форму, и объём, принимая форму того сосуда, в который их поместили, и занимая весь предоставленный им объём.

Однако существуют и такие тела, которые имеют структуру жидкости, обладают небольшой текучестью, но при этом способны сохранять форму. Такие тела называют аморфными .

Современная физика выделяет и четвёртое агрегатное состояние вещества - плазму .

1.1. Термодинамические параметры. @

Мысленно выделенная макроскопическая система, рассматриваемая методами термодинамики, называется термодинамической системой. Все тела, не включенные в состав исследуемой системы, называются внешней средой. Состояние системы задается термодинамическими параметрами (или, по-другому, параметрами состояния) – совокупностью физических величин, характеризующих свойства системы. Обычно в качестве основных параметров выбирают давление р, температуру Т и удельный объем v. Различают два типа термодинамических параметров: экстенсивные и интенсивные. Экстенсивные параметры пропорциональны количеству вещества в системе, а интенсивные не зависят от количества вещества и массы системы. Интенсивными параметрами являются давление, температура, удельный объем и др., а экстенсивными – объем, энергия, энтропия.

Объем пропорционален количеству вещества в системе. При расчетах удобнее оперировать с удельным объемом v – это величина, равная отношению объема к массе системы, то есть объем единицы массы v = V/m = 1/ρ, где ρ – плотность вещества.

Давлением называется физическая величина где dF n - проекция силы на нормаль к поверхности площадью dS.

Температура – это физическая величина, характеризующая энергию макроскопической системы, находящейся в состоянии термодинамического равновесия. Температура системы является мерой интенсивности теплового движения и взаимодействия частиц, образующих систему. В этом состоит молекулярно-кинетический смысл температуры. В настоящее время существует две температурных шкалы – термодинамическая (градуированная в Кельвинах (К)) и Международная практическая (градуированная в градусах Цельсия (˚С)). 1˚С = 1К. Связь между термодинамической температурой Т и температурой по Международной практической шкале имеет вид: Т = t + 273,15˚С.

Всякое изменение состояния термодинамической системы, характеризующееся изменением ее параметров, называется термодинамическим процессом. Термодинамический процесс называется равновесным, если при этом система проходит ряд бесконечно близких равновесных состояний. Равновесное состояние – это такое состояние, в которое система приходит в конце концов при неизменных внешних условиях и дальше остается в этом состоянии сколь угодно долго. Реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается.

1. 2. Уравнение состояния идеального газа. @

В молекулярно-кинетической теории широко используется физическая модель идеального газа. Это вещество, находящееся в газообразном состоянии, для которого выполняются следующие условия:

1. Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда.

2. Между молекулами газа отсутствуют взаимодействия, кроме случайных столкновений.

3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, т.к. они при условиях, близких к нормальным (давление р 0 = 1,013∙10 5 Па, температура Т 0 =273,15К) ведут себя аналогично идеальному газу. Например, воздух при Т=230К и р= р 0 /50 по всем трем критериям подобен модели идеального газа.

Поведение идеальных газов описывается рядом законов.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен V M =22,4∙10 -3 м 3 /моль. В одном моле различных веществ содержится одно и то же число молекул, называемое числом Авогадро N A = 6,022∙10 23 моль -1 .

Закон Бойля – Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная pV = const при Т = const и m = const.

Закон Шарля: давление данной массы газа при постоянном объеме изменяется линейно с температурой р=р 0 (1+αt) при V = const и m = const.

Закон Гей-Люссака: объем данной массы газа при постоянном давлении изменяется линейно с температурой V = V 0 (1+αt) при р = const и m = const. В этих уравнениях t – температура по шкале Цельсия, р 0 и V 0 -давление и объем при 0°С, коэффициент α =1/273,15 К -1 .

Французский физик и инженер Б.Клапейрон и русский ученый Д.И.Менделеев, объединив закон Авогадро и законы идеальных газов Бойля – Мариотта, Шарля и Гей – Люссака, вывели уравнение состояния идеального газа – уравнение, связывающее вместе все три термодинамических параметра системы: для одного моля газа рV М = RT и для произвольной массы газа


Ее можно получить, если учесть, что k =R/N A = 1,38∙10 -23 Дж/К – это постоянная Больцмана, а n =N A /V М – это концентрация молекул газа.

Для расчета давления в смеси разных газов применяется закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов: р =р 1 + р 2 + … + p n . Парциальное давление – это такое давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре. Для расчета парциального давления идеального газа используют уравнение Менделеева– Клапейрона.

1. 3. Основное уравнение молекулярно – кинетической теории идеальных газов и его следствия. @

Рассмотрим одноатомный идеальный газ, занимающий некоторый объем V (рис.1.1.) Пусть число столкновений между молекулами пренебрежимо мало по сравнению с числом столкновений со стенками сосуда. Выделим на стенке сосуда некоторую элементарную площадку ΔS и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула, массой m 0 , движущаяся перпендикулярно площадке со скоростью υ, передает ей импульс, который представляет собой разницу импульсов молекулы до и после соударения:

m 0 υ -(-m 0 υ) = 2m 0 υ.

За время Δt площадки ΔS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием ΔS и длиной υΔt. Это число молекул будет nυΔSΔt, где n – концентрация молекул. Необходимо, однако, учитывать, что реально молекулы движутся к площадке под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных координатных осей, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина – 1/6 – движется в одну сторону, половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку ΔS будет nυΔSΔt /6. При столкновении с площадкой эти молекулы передадут ей импульс

В данном случае, когда сила, действующая на единицу площади, постоянна, для давления газа на стенку сосуда мы можем записать р = F/ΔS = ΔP/ΔSΔt = = nm 0 υ 2 /3. Молекулы в сосуде движутся с самыми различными скоростями υ 1, υ 2…. υ n , общее число их – N. Поэтому необходимо рассматривать среднюю квадратичную скорость, которая характеризует всю совокупность молекул:


Приведенное выше уравнение и есть основное уравнение молекулярно-кинетической теории идеальных газов. Поскольку m 0 ‹υ кв › 2 /2 – это средняя энергия поступательного движения молекулы ‹ ε пост ›, уравнение можно переписать в виде:
где E – суммарная кинетическая энергия поступательного движения всех молекул газа. Таким образом, давление равно двум третям энергии поступательного движения молекул, содержащихся в единице объема газа.
Найдем еще кинетическую энергию поступательного движения одной молекулы ‹ ε пост ›, учитывая

k =R/N A получим:


Отсюда следует, что средняя кинетическая энергия хаотического поступательного движения молекул идеального газа пропорциональна его абсолютной температуре и зависит только от нее, т.е. температура есть количественная мера энергии теплового движения молекул. При одинаковой температуре средние кинетические энергии молекул любого газа одинаковы. При Т=0К ‹ε пост › = 0 и поступательное движение молекул газа прекращается, однако анализ различных процессов показывает, что Т = 0К – недостижимая температура.

4. Учитывая, что ‹ε пост › = 3kT/2, р = 2n‹ ε пост ›/3, получим отсюда: р = nkT.

Мы получили уже знакомый нам вариант уравнения Менделеева-Клапейрона, выведенный в данном случае из понятий молекулярно-кинетической теории статистическим методом. Последнее уравнение означает, что при одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул.

1. 4. Барометрическая формула. @

При выводе основного уравнения молекулярно-кинетической теории предполагалось, что если на молекулы газа не действуют внешние силы, то молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул, с другой, приводят к некоторому стационарному состоянию газа, при котором концентрация молекул газа и его давление с высотой убывают. Выведем закон изменения давления газа с высотой, предполагая при этом, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно р, то на высоте h+dh оно равно р + dp (рис.1.2). При dh > 0, dр < 0, т.к. давление с высотой убывает. Разность давлений р и (р + dр) равна гидростатическому давлению столба газа авсd, заключенного в объеме цилиндра высотой dh и площадью с основанием равным единице. Это запишется в следующем виде: p- (p+dp) = gρdh, - dp = gρdh или dp = ‑gρdh, где ρ – плотность газа на высоте h. Воспользуемся уравнением состояния идеального газа рV = mRT/M и выразим плотность ρ=m/V=pM/RT. Подставим это выражение в формулу для dр:

dp = - pMgdh/RT или dp/p = - Mgdh/RT

Интегрирование данного уравнения дает следующий результат: Здесь С – константа и в данном случае удобно обозначить постоянную интегрирования через lnC. Потенцируя полученное выражение, находим, что


Данное выражение называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты, или высоту, если известно давление.

Зависимость давления от высоты демонстрирует рисунок 1.3. Прибор для определения высоты над уровнем моря называется высотомером или альтиметром. Он представляет собой барометр, проградуированный в значениях высоты.

1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @


здесь n – концентрация молекул на высоте h, n 0 – то же у поверхности Земли. Так как М = m 0 N A , где m 0 – масса одной молекулы, а R = k N A , то мы получим П = m 0 gh – это потенциальная энергия одной молекулы в поле тяготения. Поскольку kT~‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›

Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.

1. 6. Распределение Максвелла молекул идеального газа по скоростям. @

При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать


Постоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функцию f(u), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равные du, то на каждый интервал скорости будет приходиться некоторое число молекул dN(u), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале от u до u+ du. Это число - dN(u)/N= f(u)du. Применяя методы теории вероятностей, Максвелл нашел вид для функции f(u)

Данное выражение - это закон о распределении молекул идеального газа по скоростям. Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f(u)=0 при u=0 и достигает максимума при некотором значении u в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN(u)/N, скорости которых лежат в интервале du и равное f(u)du, находится как площадь заштрихованной полоски основанием dv и высотой f(u), показанной на рис.1.4. Вся площадь, ограниченная кривой f(u) и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости, то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

Скорость u в, при которой функция f(u) достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функции f(v) ′ = 0 следует, что


Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.

Поделиться: