Объяснить явление интерференции света в тонких пленках. Интерференция света в тонких плёнках. Полосы равного наклона и равной толщины. Кольца ньютона. Практическое применение интерференции. Примеры решения задач

Практически создать два когерентных источника света сложно (это достигается, в частности, использованием оптических квантовых генераторов - лазеров). Однако существует относительно простой способ осуществить интерференцию. Речь идет о расщеплении одного светового луча, а точнее - каждого цуга световой волны, на два с помощью отражений от зеркал, и затем сведении их в одной точке. При этом расщепленный цуг интерферирует «сам с собой» (являясь сам себе когерентным)! На рисунке 7.6 представлена принципиальная схема такого эксперимента. В точке О на границе двух сред с показателями преломления «1 и п 2 волновой цуг расщепляется на две части. С помощью двух зеркал Р и Р 2 оба луча направляются в точку М, в которой они интерферируют. Скорости распространения двух лучей в двух разных средах равны Oi = с/п и и 2 = с/п 2 . В точке М две части цуга сойдутся со сдвигом

Рис. 7.6. Прохождение частей цуга волн в двух средах с п х и п 2 . Р и Р 2 - зеркала

по времени, равным где =

= ОР х М и S 2 = ОР 2 М - суммарные геометрические пути световых лучей от точки О до точки М в разных средах. Колебания векторов напряженности электрического поля в точке М будут Е т cos со (Г - Si/v x) и Е 02 cos со(/ - S 2 /v 2) соответственно. Квадрат амплитуды результирующего колебания в точке М будет

Так как со = 2п/Т(Т - период колебаний), а и = с/п, то выражение в квадратных скобках равно Дер = (2n/cT)(S 2 n 2 - 5, л,) = (2n/ 0)(S 2 n 2 - - 5i«i), где / Ч) - длина световой волны в вакууме. Произведение длины пути S на показатель п преломления той среды, в которой распространяется свет (Sn), называют оптической длиной пути, а разность оптических длин путей обозначают символом Д и называют оптической разностью хода волн. Имея в виду, что сТ=Х 0 , можно записать

Это выражение связывает между собой разность фаз Дер колебаний и оптическую разность хода Д лучей двух частей «расщепленного цуга». Именно Дер определяет интерференционные эффекты. Действительно, наибольшей интенсивности соответствует cos Дер = 1, т.е. Дер = (2лДо)Д = = 2 лт. Отсюда вытекает условие усиления света при интерференции

где т - любое целое (т = 0, 1,2,...) число.

Наибольшему ослаблению света соответствует cos Аф = -1, т.е. Дф = (2т + 1)7г. Тогда (2т + 1)л= (2лДо)Д, или

также при целочисленныхт = 0, 1,2,....

Легко видеть, что описанное ранее сложение волн с четырехкратным усилением интенсивности соответствует смещению двух «частей» расщепленного цуга световых волн друг относительно друга на целое число длин волн (или, соответственно, изменению разности фаз Дф на четное число л), тогда как полное взаимное погашение волн при равенстве их интенсивностей («свет + свет» дает темноту!) наблюдается при смещении двух частей цуга на половину длины волны (на нечетное число полуволн, т.е., соответственно, при Дф = (2т + 1)л и любом целом т. Сделанное заключение определяет интерференционные эффекты во всех возможных случаях.

Рис. 7.7.

Рассмотрим в качестве примера интерференцию света при отражении от тонкой пленки (или от тонкой плоскопараллельной прозрачной пластины) толщиной d (рис. 7.7). Направление падающего на пленку луча отмечено на рисунке стрелкой. Расщепление цугов происходит в этом случае при частичном отражении каждой части цуга на верхней (точка А) и нижней (точка В) поверхности пленки. Будем считать, что световой луч идет из воздуха и уходит после точки В также в воздух (среду с показателем преломления, равным единице), а материал пленки имеет показатель преломления п > 1. Каждый цуг падающего под углом а луча в точке А расщепляется на две части: одна из них отражается (луч 1 на схеме), другая - преломляется (лучАВ). В точке В каждый цуг преломленного луча расщепляется вторично: он частично отражается от нижней поверхности пленки, а частично преломляется (пунктир) и выходит за ее пределы. В точке С цуг снова расщепляется на два, но нас будет интересовать только та его часть (луч 2), которая выходит из пленки под тем же углом а, что и луч 1. Отраженные от верхней поверхности пленки лучи 1 и 2 собираются линзой в одну точку (на рисунке не показана) на экране или в хрусталике глаза наблюдателя (та же линза). Будучи частями одного и того же первичного цуга, лучи 1 и 2 являются когерентными и могут участвовать в интерференции, причем усиление или ослабление интенсивности света зависит от их оптической разности хода (или разности фаз колебаний).

Разность фаз между колебаниями в волнах 1 и 2 создается на длинах пути AD (в воздухе) и АВС (в пленке). Оптическая разность хода составляет при этом

Имея в виду, что

sin а = п sin р (закон преломления), можно получить Д = (2dn/ cos Р)(1 - sin 2 p) или Д = 2dn cos р. Вследствие того, что условия задачи задаются обычно не углом преломления р, а углом падения а, величину Д удобнее представить в виде

При определении условий максимума или минимума интенсивности света следовало бы приравнять величину Д целому или полуцелому числу длин волн (условия (7.6) и (7.7)). Однако помимо оценки оптической разности хода Д, следует иметь в виду также возможность «потери» (или, что то же самое, «приобретения») половины длины волны лучом при отражении от оптически более плотной среды. Реализация этой возможности зависит от конкретной задачи, точнее от того, какая среда окружает пленку. Если пленка с п > 1 окружена воздухом с п = 1, потеря половины длины волны происходит только в точке А (см. рис. 7.7). А если пленка лежит на поверхности тела (другая среда) с показателем преломления п большим, чем для материала пленки, потеря половины длины волны происходит в двух точках А к В; но, так как при этом «набегает» целая длина волны, этот эффект можно не учитывать - фазовые условия интерферирующих волн сохраняются. Видно, что задача требует индивидуального подхода. Основной принцип ее решения заключается в том, чтобы сначала найти оптическую разность хода интерферирующих лучей, рассмотрев возможную потерю половины длины волны в разных точках отражения (при необходимости добавить или вычесть ее в Д), и приравнять целому числу длин волн при определении условий усиления интенсивности света или к полуцелому числу длин волн (нечетному числу полуволн) - при нахождении минимума освещенности (ослабление при интерференции). В случае находящейся в воздухе пленки, изображенной на рис. 7.7, условие интерференционного максимума имеет вид

Вследствие того, что показатель преломления зависит от длины волны (см. подраздел 7.5), условия усиления и ослабления интенсивности для света

Рис. 7.8.

разных длин волн будут разные. Поэтому пленка будет разлагать падающий белый свет в спектр, т.е. в отраженном белом свете тонкая пленка видится окрашенной в разные цвета. С примерами этого каждый из нас встречался неоднократно, наблюдая разноцветные мыльные пузыри и пятна масла на поверхности воды.

Рассмотрим теперь пример тонкого воздушного клина (рис. 7.8). Пластина с хорошо обработанной поверхностью лежит на другой такой же пластине. В определенном месте между двумя пластинами находится предмет (например, тонкая проволочка) так, что образуется воздушный клин с углом 5. Рассмотрим луч света, падающий нормально на пластины. Будем считать, что расходимость цугов световых волн в точках отражения и преломления при отражении от поверхностей воздушного клина пренебрежимо мала, поэтому интерферирующие лучи собираются в одной точке наблюдения (их так же, как и в предыдущем примере, можно собрать с помощью вспомогательной линзы). Допустим, что в некоторой точке А по длине пластин оптическая разность хода Д равна целому числу т длин волн плюс Хо/2 (за счет отражения от оптически более плотной среды нижней пластины). Такая точка всегда найдется. При этом окажется, что в точке В на расстоянии АВ = d, отсчитываемом вдоль пластин и равном )^о /(2 tg 8) (множитель 2 возникает за счет того, что луч проходит пространство между пластинами дважды, в одну и другую сторону), интерференционная картина повторится для т ± 1 (фазовые условия при сложении волн повторятся). Измеряя расстояние d между этими двумя точками, легко связать длину волны с углом б

Рис. 7.9.

Если посмотреть на эту картину сверху, то можно увидеть геометрическое место точек, в которых при определенных целых числах т образовались светлые (или темные) полосы, горизонтальные и параллельные основанию клина (т.е. возникли условия интерференционных максимумов или минимумов). Вдоль этой полосы соблюдаются условия (7.6) или (7.7), а также (7.10), т.е. вдоль нее воздушный зазор имеет одну и ту же толщину. Такие полосы носят название полос равной толщины. При условии, что пластины изготовлены тщательно, полосы равной толщины представляются параллельными прямыми. Если в пластинах имеются изъяны, характер полос заметно меняется, положение и форма изъянов проступают четко. На этом интерференционном эффекте, в частности, основан способ контроля качества обработки поверхности.

На рисунке 7.9 показаны полосы равной толщины: в середине воздушного клина создан узкий поток теплого воздуха, плотность которого и, соответственно, показатель преломления отличаются от значений для холодного воздуха. Видно искривление линий постоянной толщины в области потока.

Если выпуклая линза лежит на плоской прозрачной пластине, то при определенном соотношении радиуса R кривизны линзы и длины волны X света можно наблюдать так называемые кольца Ньютона.

Они представляют собой те же полосы равной толщины в форме концентрических окружностей.

Рассмотрим такой интерференционный опыт, приводящий к образованию колец Ньютона сначала в отраженном - точка М наблюдения сверху (рис. 7.10, а), а затем в проходящем свете (рис. 7.10, б) - точка М расположена внизу под линзой Л) и прозрачной пластиной П. Определим радиусы г т светлых и темных колец Ньютона (наблюдаемая картина К на рисунках) в зависимости от длины /. волны света и радиуса R кривизны используемой в опыте линзы.

Схема опыта представляет оптическую систему, состоящую из плоской с одной стороны и выпуклой с другой линзы Л! малой кривизны, лежащей на стеклянной пластине П, произвольной толщины.

На линзу Л (падает плоский волновой фронт света от монохроматического источника, (длина к волны света) который в результате интерференции отражений, возникающих в воздушном зазоре между линзой и пластиной образует изображение К, которое можно наблюдать сверху от линзы - точка М (см. рис. 7.10, а), либо снизу от нее (см. рис. 7.10, б). Для удобства наблюдения изображения в расходящихся из-за не параллельности отражающих плоскостей лучах используется вспомогательная собирающая линза Л 2 (на небольших расстояниях наблюдения ее наличие не обязательно). Можно вести наблюдение непосредственно или регистрировать изображение с помощью оптически чувствительного детектора (например, фотоэлемента).

Рассмотрим ход двух близкорасположенных лучей 1 и 2 (рис. 7.10, а). Эти лучи до попадания в точку наблюдения М (глаз наблюдателя на рисунке) испытывают многократные отражения на участке распространения и преломления «вниз» на границах раздела воздух-линза Л, линза-воздушный зазор толщины d = АВ, и на участке «вверх» соответственно. Но в образовании интересующей нас интерференционной картины существенно их поведение в области воздушного промежутка d = АВ. Именно здесь образуется оптическая разность хода Д лучей 1 и 2, благодаря которой создаются условия наблюдения интерференции в опыте с кольцами Ньютона. Если отражение (поворот) луча 1 происходит в точке Л, а отражение (поворот) луча 2 - в точке В (при отражении луча 2 в той же точке, что и луча 1, т.е. в точке А, разности хода Д не будет, и луч 2 будет просто «эквивалентен» лучу 1), то интересующая нас оптическая разность хода

т.е. удвоенной толщине воздушного зазора (при малой кривизне линзы и близкорасположенных лучах 1 и 2 АВ + ВА » 2d) плюс-минус половина длины волны (/./2), которая теряется (или приобретается) при отражении света от оптически более плотной (показатель преломления стекла л ст = п 2 = 1,5 больше показателя преломления воздуха п тт = П= 1) среды в точке А (изменение фазы колебаний на ±л), где луч 1 отражается от стеклянной пластины П и возвращается в воздушный зазор. Потери (приобретения) полуволны лучом 2, распространяющимся в стекле при отражении от границы раздела в точке В, не происходит (граница раздела стекло-воздух и отражение от воздуха - оптически менее плотной среды - здесь п ст = П > «2 = /г возд). На участке «вверх» от точки В до точки наблюдения М у отраженных лучей 1 "и 2"оптические пути одинаковы (оптической разности хода нет).

Рис. 7.10.

Из рассмотрения схемы опыта в предположении малости величины воздушного зазора d (d « R и r m) между линзой Л! и пластиной П, т.е., полагая d 2 ~ 0, можно записать:

отсюда следует При этом для оптической разности хода Д рассматриваемых лучей имеем

Оставляя для знак «+» в последнем выражении («-» даст в результате номера т тех же колец, отличающиеся на единицу) и принимая во внимание условия интерференционного максимума Д = тХ и минимума Д = (2ти+1) л/2, где /и = О, 1, 2, 3,целые числа, получаем:

Для максимума (светлые кольца)

Для минимума (темные кольца)

Полученные результаты можно объединить одним условием

определив т - как четные для максимума (светлые кольца) и нечетные для минимума (темные кольца).

Из полученного результата следует, что в центре интерференционной картины, т.е. при т = 0, наблюдаемой в отраженном свете, будет темное (г ттсш1 = 0) кольцо (точнее пятно).

Аналогичное рассмотрение можно провести и для опыта в проходящем свете (рис. 7.10, б - точка М наблюдения внизу). Из рассмотрения увеличенного фрагмента рисунка видно, что отличие от предыдущего опыта в проходящем свете воздушный зазор между Л| и пластиной П проходится лучом 1 трижды (вниз, вверх и снова вниз) и дважды происходит его отражение от оптически более плотной среды (стекла) - в точках А и В. При этом луч 2 проходит воздушный промежуток между линзой и пластиной однократно (отражения и преломления этого луча в других точках на границах радела на наблюдаемую картину влияния не оказывают и во внимание не принимаются) и отражений от оптически более плотной среды у него не происходит. Поэтому оптическая разность хода лучей 1 и 2 в рассматриваемом случае будет

или просто

так как изменение оптической разности хода на длину волны X в ту или иную сторону (или на целое число длин волн) не приводит к существенному для интерференции изменению фазовых соотношений в интерферирующих волнах (лучах) - разность фаз между лучами 1 и 2 в этом случае сохраняется. Условия максимума и минимума (Д = тХ и Д = (2т + 1) Х/2 соответственно), а также

геометрическое условие для радиусов г т соответствующих колец

для опыта в проходящем свете остаются прежними, поэтому получаем:

Для максимумов

Для минимумов

при т = 0,1,2,3,... - т. е. условия, противоположные рассмотренным для опыта в отраженном свете. Снова переопределяя т как четные и нечетные, можно написать обобщенную формулу и для этого случая в виде

где уже для нечетных т получаем максимум (светлое кольцо), а для четных - минимум (темное кольцо). Таким образом, в проходящем свете по сравнению с отраженным светлые и темные кольца меняются местами гт г т (в центре, при т = 0 получается светлое пятно г" тсв = 0).

Рис. 7.11.

Явления интерференции находят широкое применение в технике и промышленности. Они также используются в интерферометрии при определении показателей преломления веществ во всех трех его состояниях - твердом, жидком и газообразном. Имеется большое число разновидностей интерферометров, различающихся своим назначением (один из них - интерферометр Майкельсона, ранее рассмотрен нами при обсуждении гипотезы мирового эфира (см. рис. 1.39)).

Проиллюстрируем определение показателя преломления вещества на примере интерферометра Жамёна, предназначенного для измерения показателей преломления жидкостей и газов (рис. 7.11). Две одинаковые плоскопараллельные и полупрозрачные зеркальные пластины А и В установлены параллельно друг другу. Луч света из источника S падает на поверхность пластины А под углом а, близким к 45°. В результате отражения от внешней и внутренней поверхностей пластины А исходят два параллельных луча 1 и 2. Пройдя сквозь две одинаковые стеклянные кюветы Ki и К2, эти лучи попадают на пластину В, снова отражаются от обеих ее поверхностей и собираются с помощью линзы L в точке наблюдения Р. В этой точке они интерферируют, и интерференционные полосы рассматриваются с помощью окуляра, который на рисунке не показан. Если одна из кювет (например К|) заполняется веществом с известным абсолютным показателем преломления П, а вторая - веществом, показатель преломления «2 которого измеряется, то оптическая разность хода между интерферирующими лучами будет 6 = (п - п 2)1, где / - длина кювет на пути света. При этом наблюдается смещение интерференционных полос относительно их положения при пустых кюветах. Смещение S пропорционально разности («! - « 2), что позволяет определить один из показателей преломления, зная другой. При относительно невысоких требованиях к точности измерения положения полос, точность в определении показателя преломления может достигать 10~*-10 -7 (т.е. 10 -4 - 10 _5 %). Эта точность обеспечивает наблюдение малых примесей в газах и жидкостях, измерение зависимости показателей преломления от температуры, давления, влажности и др.

Существует много других конструкций интерферометров, предназначенных для различных физических и технических измерений. Как уже упоминалось, с помощью специально сконструированного интерферометра А.А. Майкельсоном и Е.В. Морли в 1881 г. исследована зависимость скорости света от скорости движения испускающего его источника. Установленный в этом опыте факт постоянства скорости света был положен А. Эйнштейном в основу специальной теории относительности.

  • Д измеряется в единицах длины (в СИ это метры), а Д
  • Вообще говоря, требование монохроматичности не является обязательным, но в случае полихроматического (белого) света источника наблюдаемая картина будет представлять собой наложение колец разной цветности и затруднять выделение интересующегонас эффекта.

При освещении тонкой прозрачной пластинки или пленки можно наблюдать интерференцию световых волн, отраженных от верхней и нижней поверхностей пластинки (рис. 26.4). Рассмотрим плоскопараллельную пластинку толщины / с показателем преломления п } на которую под углом а падает плоская монохроматическая волна с длиной волны X. Предположим для определенности, что луч падает на пластинку из воздуха с показателем преломления

а пластинка лежит на подложке с показателем преломления

Рис. 26.4

Такая ситуация имеет место, например, при интерференции в тонкой пластинке или пленке, окруженной воздухом.

Найдем оптическую разность хода интерферирующих лучей 2 и 3 между точкой А и плоскостью CD. Именно эта разность определяет интерференционную картину, поскольку расположенная далее собирающая линза (или глаз) лишь сводит два интерферирующих луча в один. При этом надо учесть, что в соответствии с опытом отражение от оптически более плотной среды в точке А ведет к изменению фазы на Х/2 (на противоположную), а отражение от оптически менее плотной среды в точке В не ведет к изменению фазы волны. Таким образом, набирается оптическая разность хода интерферирующих лучей 2 и 3, равная

Из аАВО следует, что

Из aACD с учетом закона преломления-= п имеем

J sin р

AD = АС sina = 2/10sina = 2/tgPsina = 2w/tgpsinp = 2rc/sin 2 p/cosp.

Тогда оптическая разность хода равна

Эту формулу удобней анализировать, если из закона преломления выразить угол преломления через угол падения:

Из условия максимума (26.19) имеем

В свою очередь условие минимума (26.20) дает

(в последней формуле нумерация целых чисел для упрощения вида формулы сдвинута на единицу).

Согласно формулам в зависимости от угла падения монохроматического света пластинка в отраженном свете может выглядеть светлой или темной. Если пластинку освещать белым светом, то условия максимума и минимума могут выполняться для отдельных длин волн и пластинка выглядит окрашенной. Этот эффект можно наблюдать на стенках мыльных пузырьков, на пленках масла и нефти, на крыльях насекомых и птиц, на поверхности металлов при их закалке (цвета побежалости).

Если монохроматический свет падает на пластинку переменной толщины, то условия максимума и минимума определяются толщиной /. Поэтому пластинка выглядит покрытой светлыми и темными полосами. При этом в клине - это параллельные линии, а в воздушном промежутке между линзой и пластинкой - кольца (кольца Ньютона).

Прямое отношение к интерференции в тонких пленках имеет просветление оптики. Как показывают расчеты, отражение света приводит к уменьшению интенсивности прошедшего света на несколько процентов даже почти при нормальном падении света на линзу. Учитывая, что современные оптические устройства содержат достаточно большое количество линз, зеркал, светоделительных элементов, потери интенсивности световой волны без применения специальных мер могут стать значительными. Для уменьшения потерь на отражение используется покрытие оптических деталей пленкой со специальным образом подобранными толщиной / и показателем преломления п и. Идея уменьшения интенсивности отраженного света от поверхности оптических деталей состоит в интерференционном гашении волны, отраженной от внешней поверхности пленки, волной, отраженной от внутренней поверхности пленки (рис. 26.5). Для осуществления этого желательно, чтобы амплитуды обеих волн были равны, а фазы отличались на 180°. Коэффициент отражения света на границе сред определяется относительным показателем преломления сред. Так, если Рис. 26.5

свет проходит из воздуха в линзу с показателем преломления п у то условие равенства относительных показателей преломления на входе в пленку и выходе из нее сводится к соотношению

Толщина пленки подбирается исходя из условия, чтобы дополнительный набег фазы света был равен нечетному числу полуволн. Таким способом удается ослабить отражение света в десятки раз.

Радужная окраска мыльных пузырей или бензиновых пленок на воде возникает в результате интерференции солнечного света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную прозрачную пленку с показателем преломления п и толщиной d под углом падает плоская монохроматическая волна с длиной (рис. 4.8).

Рис. 4.8. Интерференция света в тонкой пленке

Интерференционная картина в отраженном свете возникает из-за наложения двух волн, отраженных от верхней и нижней поверхностей пленки. Рассмотрим сложение волн, выходящих из точки С . Плоскую волну можно представить как пучок параллельных лучей. Один из лучей пучка (2) непосредственно попадает в точку С и отражается (2")в ней наверх под углом, равным углу падения . Другой луч (1) попадает в точку С более сложным путем: сначала он преломляется в точке А и распространяется в пленке, затем отражается от нижней ее поверхности в точке 0 и, наконец, выходит, Преломившись, наружу (1") в точке С под углом, равным углу падения . Таким образом, в точке С пленка отбрасывает вверх два параллельных луча, из которых один образовался за счет отражения от нижней поверхности пленки, второй - вследствие отражения от верхней поверхности пленки. (Пучки, возникающие в результате многократного отражения от поверхностей пленки, не рассматриваются ввиду их малой интенсивности.)

Оптическая разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С , равна

Полагая показатель преломления воздуха и учитывая соотношения

Используем закон преломления света

Таким образом,

Кроме оптической разности хода , следует учесть изменение фазы волны при отражении. В точке С на границе раздела «воздух пленка» происходит отражение от оптически более плотной среды , то есть среды с большим показателем преломления. При не слишком больших углах падения в этом случае фаза претерпевает изменение на . (Такой же скачок фазы происходит при отражении волны, бегущей вдоль струны, от ее закрепленного конца.) В точке 0 на границе раздела «пленка - воздух» свет отражается от оптически менее плотной среды, так что скачка фазы не происходит.

В итоге между лучами 1" и 2" возникает дополнительная разность фаз , которую можно учесть, если величину уменьшить или увеличить на половину длины волны в вакууме.

Следовательно, при выполнении соотношения

получается максимум интерференции в отраженном свете, а в случае

в отраженном свете наблюдается минимум .

Таким образом, при падении света на бензиновую пленку на воде в зависимости от угла зрения и толщины пленки наблюдается радужная окраска пленки, свидетельствующая об усилении световых волн с определенными длинами l. Интерференция в тонких пленках может наблюдаться не только в отраженном, но и в проходящем свете.

Как уже отмечалось, для возникновения наблюдаемой интерференционной картины оптическая разность хода интерферирующих волн не должна превышать длины когерентности , что накладывает ограничение на толщину пленки.

Пример. На мыльную пленку (п = 1.3 ), находящуюся в воздухе, падает по нормали пучок белого света. Определим, при какой наименьшей толщине d пленки отраженный свет с длиной волны мкм окажется максимально усиленным в результате интерференции.

Из условия интерференционного максимума (4.28) находим для толщины пленки выражение

(угол падения ). Минимальное значение d получается при :

Световых волн от двух точечных источников света. Однако часто нам приходится иметь дело с протяжёнными источниками света при явлениях интерференции, наблюдаемых в естественных условиях, когда источником света служит участок неба, т.е. рассеянный дневной свет. Наиболее часто встречающийся и весьма важный случай подобного рода имеет место при освещении тонких прозрачных плёнок, когда необходимое для возникновения двух когерентных пучков расщепление световой волны происходит вследствие отражения света передней и задней поверхностями плёнки.

Явление это, известное под названием цветов тонких плёнок , легко наблюдается на мыльных пузырях, на тончайших пленках масла или нефти, плавающих на поверхности воды, и т.д.

Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок волн.

Пластинка отражает два параллельных пучка света, из которых один образовался за счет отражения от верхней поверхности пластинки, второй - вследствие отражения от нижней поверхности каждый из этих пучков представлен только одним лучом).

Рисунок 2. Интерференция в тонких пленках.

При входе в пластинку и при выходе из нее второй пучок претерпевает преломление. Кроме этих двух пучков, пластинка отражает пучки, возникающие в результате трех -, пяти - и т.д. кратного отражения от поверхности пластинки. Однако ввиду их малой интенсивности это пучки принимать во внимание мы не будем. Разность хода, приобретенная лучами 1 и 2 до того, как они сойдутся в точке С, равна , (8) где S 1 - длина отрезка ВС; S 2 - суммарная длина отрезков АО и ОС; n - показатель преломления пластинки.

Показатель преломления среды, окружающей пластинку, полагаем равным единице, b - толщина пластинки. Из рисунка видно, что:

;

подставив эти значения в выражение (8) и произведя простые вычисления легко привести формулу (9) для разности хода Δ к виду

. (9)

Однако, при вычислении разности фаз между колебаниями в лучах 1 и 2 нужно, кроме оптической разности хода Δ, учесть возможность изменения фазы волны в точке С, где отражение происходит от границы раздела оптически менее плотной среды. Поэтому фаза волны претерпевает изменение на π. В итоге между 1 и 2 возникает дополнительная разность фаз, равная π. Ее можно учесть, добавив к Δ (или вычтя из нее) половину длины волны в вакууме. В результате получим

(10)

Интенсивность зависит от величины оптической разности хода (10). Соответственно, из условий (5) и (6) при получаются максимумы, а при - минимумы интенсивности (m - целое число).


Тогда условие максимума интенсивности имеет вид:

, (11)

а для минимума освещенности имеем

. (12)

При освещении светом плоскопараллельной пластинки (b = const) результаты интерференции зависят только от углов падения на плёнку. Интерференционная картина имеет вид чередующихся криволинейных тёмных и светлых полос. Каждой из этих полос соответствует определённое значение угла падения. Поэтому они называются полосами или линиями равного наклона. Если оптическая ось линзы L перпендикулярна к поверхности плёнки, полосы равного наклона должны иметь вид концентрических колец с центром в главном фокусе линзы. Это явление используется на практике для весьма точного контроля степени плоскопараллельности тонких прозрачных пластинок; изменение толщины пластинок на величину порядка 10 -8 м уже можно обнаружить по искажению формы колец равного наклона.

Интерференционные полосы на поверхности плёнки в виде клина имеют равную освещённость на всех точках поверхности, соответствующих одинаковым толщинам плёнки. Интерференционные полосы параллельны ребру клина. Их называют интерференционными полосами равной толщины.

Формула (10) выведена для случая наблюдения интерференции в отраженном свете. Если интерференционные полосы равного наклона наблюдаются в тонких пластинках или плёнках, находящихся в воздухе на просвет (в проходящем свете), то потери волны при отражении не произойдёт и разность хода Δ будет определяться по формуле (9). Следовательно, оптические разности хода для проходящего и отражённого света отличаются на λ/2, т.е. максимумам интерференции в отражённом свете соответствуют минимумы в проходящем свете, и наоборот.

Кольца Ньютона .

Полосы равной толщины можно получить, если положить плосковыпуклую линзу с большим радиусом кривизны R на плосковыпуклую пластинку. Между ними также образуется воздушный клин. В этом случае полосы равной толщины будут иметь вид колец, которые называются кольцами Ньютона ; разность хода интерферирующих лучей, так же и в предыдущем случае, будет определяться по формуле (10).

Определим радиус k-го кольца Ньютона: из треугольника ABC имеем , откуда, пренебрегая b 2 , так как R>> b, получим .

Рисунок 3. Кольца Ньютона

Подставляем это выражение в формулу (10):

Если эта разность хода равна целому числу длин волн (условие максимума интерференции), то для радиуса k-го светлого кольца Ньютона в отраженном свете или тёмного в проходящем имеем:

. (14)

Произведя аналогичные несложные выкладки, получим формулу для определения радиусов тёмных колец в отражённом свете (или светлых в проходящем):

ис. 1 К КК

При прохождении света через линзы или призмы на каждой из поверхности световой поток частично отражается. В сложных оптических системах, где много линз и призм, проходящий световой поток значительно уменьшается, кроме того, появляются блики. Так, было установлено, что в перископах подводных лодок отражается до 50% входящего в них света. Для устранения этих дефектов применяется приём, который называется просветлением оптики. Сущность этого приёма заключается в том, что оптические поверхности покрываются тонкими плёнками, создающими интерференционные явления. Назначение пленки заключается в гашении отраженного света.

Вопросы для самоконтроля

1) Что называется интерференцией и интерференцией плоских волн?

2) Какие волны называются когерентными?

3) Объясните понятие временной и пространственной когерентности.

4) Что представляет собой интерференция в тонких пленках.

5) Объясните в чем заключается многолучевая интерференция.

СПИСОК ЛИТЕРАТУРЫ

Основная

1. Детлаф, А.А . Курс физики учеб. пособие / А.А. Детлаф, Б.М. Яворский. - 7-е изд. Стер. - М. : ИЦ «Академия». - 2008.-720 с.

2. Савельев, И.В . Курс физики: в 3т.: Т.1: Механика. Молекулярная физика: учеб.пособие / И.В. Савельев. - 4-е изд. стер. - СПб.; М. Краснодар: Лань.-2008.-352 с.

3. Трофимова, Т.И. курс физики: учеб. пособие/ Т.И. Трофимова.- 15-е изд., стер. - М.: ИЦ «Академия», 2007.-560 с.

Дополнительная

1. Фейнман, Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. - М.: Мир.

Т.1. Современная наука о природе. Законы механики. - 1965. -232 с.

Т. 2. Пространство, время, движение. - 1965. - 168 с.

Т. 3. Излучение. Волны. Кванты. - 1965. - 240 с.

2. Берклеевский курс физики. Т.1,2,3. - М.: Наука, 1984

Т. 1. Китель, Ч. Механика / Ч. Китель, У. Найт, М. Рудерман. - 480 с.

Т. 2. Парселл, Э. Электричество и магнетизм / Э. Парселл. - 448 с.

Т. 3. Крауфорд, Ф. Волны / Ф. Крауфорд - 512 с.

3. Фриш, С.Э. Курс общей физики: в 3 т.: учеб. / С.Э. Фриш, А.В. Тиморева. - СПб.: М.; Краснодар: Лань.-2009.

Т. 1. Физические основы механики. Молекулярная физика. Колебания и волны: учебник - 480 с.

Т.2: Электрические и электромагнитные явления: учебник. - 518 с.

Т. 3. Оптика. Атомная физика: учебник - 656 с.

границы «пленка–воздух», идут назад, снова отражаются от границы «воздух–пленка» и лишь после этого выходят наружу (рис. 19.13). (Конечно, найдутся лучи, которые испытают несколько пар отражений, но их доля в общем «балансе» будет не так велика, ведь часть световых волн будет уходить обратно, т.е. туда, откуда пришли.)

Интерференция будет проходить между лучом (правильнее сказать, конечно, световой волной) 1 ¢ и лучом 2 ¢. Геометрическая разность хода этих лучей (разность длин пройденных путей) равна Ds = 2h . Оптическая разность хода D = п Ds = 2пh .

Условие максимума

Условие минимума

. (19.9)

Если в формуле (19.9) положить k = 0, получим , именно при такой длине наступает первый минимум освещенности в проходящем свете.

Интерференция в отраженном свете. Рассмотрим ту же самую пленку с противоположной стороны (рис. 19.14). В данном случае мы будем наблюдать интерференцию за счет взаимодействия лучей 1 ¢ и 2 ¢: луч 1 ¢ отразился от границы «воздух–пленка», а луч 2 ¢ – от границы «пленка–воздух» (рис. 19.15).

Рис. 19.14 Рис. 19.15

Читатель : По-моему, здесь ситуация точно такая же , как и с проходящим светом: Ds = 2h ; D = п Ds = 2nh , а для h max и h min справедливы формулы (19.8) и (19.9).

Читатель : Да.

Автор : И минимум в проходящем? Получается, что свет войдет в пленку, а наружу не выйдет , так как и спереди, и сзади – минимум освещенности. Куда же делась световая энергия, если пленка не поглощает света?

Читатель : Да, такое, действительно, невозможно. Но где же ошибка?

Автор : Тут необходимо знать один экспериментальный факт. Если световая волна отражается от границы среды более оптически плотной с менее оптически плотной (стекло–воздух), то фаза отраженной волны равна фазе падающей (рис. 19.16, а ). А вот если отражение проходит на границе среды, оптически менее плотной, со средой, более плотной (воздух–стекло), то фаза волны уменьшается на p (рис. 19.16, б ). А это значит, что оптическая разность хода уменьшается на половину длины волны , т.е. луч 1 ¢, отраженный от внешней поверхности пластины (см. рис. 19.15), «теряет» полволны, и за счет этого отставание от него второго луча в оптической разности хода уменьшается на l/2.

Таким образом, оптическая разность хода лучей 2 ¢ и 1 ¢ на рис. 19.15 будет равна

Тогда условие максимума запишется в виде

(19.10)

условие минимума

Сравнивая формулы (19.8) и (19.11), (19.9) и (19.10), видим, что при одном и том же значении h достигается минимум освещенности в проходящем свете и максимум в отраженном или же максимум в проходящем и минимум в отраженном. Иными словами, свет либо главным образом отражается, либо проходит насквозь в зависимости от толщины пленки.

Задача 19.5. Просветление оптики . Чтобы уменьшить долю отраженного света от оптических стекол (например, от объективов фотоаппарата) на их поверхность наносят тонкий слой прозрачного вещества, у которого показатель преломления п меньше, чем у стекла (так называемый метод просветления оптики). Оцените толщину нанесенного слоя, считая, что лучи падают на оптическое стекло приблизительно нормально (рис. 19.17).

Рис. 19.17

Решение . Для уменьшения доли отраженного света необходимо, чтобы лучи 1 и 2 (см. рис. 19.17), отраженные от внешней и внутренней поверхности пленки, соответственно «гасили» друг друга.

Заметим, что оба луча при отражении от более оптически плотной среды теряют по полволны каждый. Поэтому оптическая разность хода будет равна D = 2nh .

Условие минимума будет иметь вид

Минимальная толщина пленки h min , соответствующая k = 0,

Оценим величину h min . Возьмем l = 500 нм, п = 1,5, тогда

м = 83 нм.

Заметим, что при любой толщине пленки погасить на 100 % можно только свет определенной длины волны (при условии отсутствия поглощения!). Обычно «гасят» свет средней части спектра (желтый и зеленый). Остальные цвета при этом гасятся значительно слабее.

Читатель : А чем объяснить радужную окраску пленки бензина в луже?

Автор : Здесь тоже имеет место интерференция, как при просветлении оптики. Поскольку толщина пленки в разных местах различно, то в одном месте гасятся одни цвета, а в других – другие. «Непогашенные» цвета мы и видим на поверхности лужи.

СТОП! Решите самостоятельно: В6, С1–С5, D1.

Кольца Ньютона

Рис. 19.18

Задача 19.6. Рассмотрим подробно уже описанный нами опыт (рис. 19.18): на плоской стеклянной пластине лежит плосковыпуклая линза радиусом R . Сверху на линзу падает свет с длиной волны l. Свет является монохроматичным, т.е. длина волны жестко фиксирована и не меняется со временем. При наблюдении сверху видна интерференционная картина из концентрических светлых и темных колец (кольца Ньютона). При этом по мере удаления от центра кольца становятся более узкими. Требуется найти радиус N -го темного кольца (считая от центра).

(рис. 19.19). Именно этот отрезок определяет геометрическую разность хода лучи 1 ¢ и 2 ¢.

Рис. 19.19

Рассмотрим DОВС : (по теореме Пифагора),

h = АC = ОА – ОС = . (1)

Попробуем немного упростить выражение (1), учитывая, что r << R . Действительно, эксперименты показывают, что если R ~ 1 м, то r ~ 1 мм. Умножим и разделим выражение (1) на сопряженное выражение , получим

Запишем условие минимума для отраженного света: геометрическая разность хода лучей 1 ¢ и 2 ¢ составляет 2h , но луч 2 ¢ теряет полволны за счет отражения от оптически более плотной среды – стекла, поэтому оптическая разность хода получается на полволны меньше, чем геометрическая разность хода:

Нас интересует радиус N -го темного кольца. Правильнее сказать, речь идет о радиусе окружности , в которой достигается N -й по счету от центра минимум освещенности. Если r N – искомый радиус, то условие минимума имеет вид:

где N = 0, 1, 2…

Запомним:

. (19.12)

Кстати, при N = –1 r 0 = 0. Это значит, что в центре будет находиться темное пятно.

Ответ :

Заметим, что, зная r N , R и N , можно экспериментально определить длину волны света!

Читатель : А если бы нас интересовал радиус N -го светлого кольца?

Рис. 19.20

Читатель : А можно ли наблюдать кольца Ньютона в проходящем свете?

СТОП! Решите самостоятельно: А7, В7, С6–С9, D2, D3.

Интерференция от двух щелей (опыт Юнга)

Английский ученый Томас Юнг (1773–1829) в 1807 г. поставил следующий опыт. Яркий пучок солнечного света он направил на экран с малым отверстием или узкой щелью S (рис. 19.21). Свет, прошедший через щель S , шел ко второму экрану с двумя узкими отверстиями или щелями S 1 и S 2 .

Рис. 19.21

Щели S 1 и S 2 представляют собой когерентные источники, так как они имели «общее происхождение» – щель S . Свет от щелей S 1 и S 2 падал на удаленный экран, и на этом экране наблюдалось чередование темных и светлых участков.

Разберемся с этим опытом подробно. Будем считать, что S 1 и S 2 представляет собой длинные узкие щели , которые являются когерентными источниками, испускающими световые волны. На рис. 19.21 показан вид сверху.

Рис. 19.22

Область пространства, в которой эти волны перекрываются, называется полем интерференции . В этой области наблюдается чередование мест с максимальной и минимальной освещенностью. Если в поле интерференции внести экран, то на нем будет видна интерференционная картина, которая имеет вид чередующихся светлых и темных полос. В объеме это выглядит так, как показано на рис. 19.22.

Пусть нам задана длина волны l, расстояние между источниками d и расстояние до экрана l . Найдем координаты х min и х max темных и светлых полос. Точнее, точки, соответствующие минимуму и максимуму освещенности. Все дальнейшие построения будем проводить в горизонтальной плоскости a, на которую будем «смотреть сверху» (рис. 19.23).

Рис. 19.23

Рассмотрим точку Р на экране, находящуюся на расстоянии х от точки О (точка О – это пересечение экрана с перпендикуляром, восстановленным из середины отрезка S 1 S 2). В точке Р налагаются друг на друга луч S 1 P , идущий от источника S 1 , и луч S 2 P , идущий от источника S 2 . Геометрическая разность хода этих лучей равна разности отрезков S 1 P и S 2 Р . Заметим, что поскольку оба луча распространяются в воздухе и не испытывают никаких отражений, то геометрическая разность хода равна оптической разности хода:

D = S 2 P S 1 Р .

Рассмотрим прямоугольные треугольники S 1 АР и S 2 ВР . По теореме Пифагора: , . Тогда

.

Умножим и разделим выражение это выражение на сопряженное выражение, получим:

Учитывая, что l >> x и l >> d , упростим выражение

Условие максимума:

где k = 0, 1, 2, …

Условие минимума:

, (19.14)

где k = 0, 1, 2, …

Расстояние между соседними минимумами называется шириной интерференционной полосы .

Найдем расстояние между (k + 1)-м и k -м минимумами:

Запомним: ширина интерференционной полосы не зависит от порядкового номера полосы и равна

СТОП! Решите самостоятельно: А9, А10, В8–В10, С10.

Билинза

Задача 19.6. Собирающая линза с фокусным расстоянием F = = 10 см разрезана пополам и половинки раздвинуты на расстояние h = 0,50 мм. Найти: 1) ширину интерференционных полос; 2) число интерференционных полос на экране, расположенном за линзой на расстоянии D = 60 см, если перед линзой имеется точечный источник монохроматического света с длиной волны l = 500 нм, удаленный от нее на расстояние а = 15 см.

Рис. 19.24

2. Сначала найдем расстояние b от линзы до изображений S 1 и S 2 . Применим формулу линзы:

Тогда расстояние от источников до экрана:

l = D – b = 60 – 30 = 30 cм.

3. Найдем расстояние между источниками. Для этого рассмотрим подобные треугольники SO 1 O 2 и SS 1 S 2 . Из их подобия следует

4. Теперь мы вполне можем воспользоваться формулой (19.15) и вычислить ширину интерференционной полосы:

= м = 0,10 мм.

5. Чтобы определить, сколько интерференционных полос получится на экране, изобразим поле интерференции , т.е. ту область, в которой перекрываются волны от когерентных источников S 1 и S 2 (рис. 19.25).

Рис. 19.25

Как видно из рисунка, лучи от источника S 1 покрывают область S 1 AA 1 , а лучи от источника S 2 покрывают область S 2 ВВ 1 . Поле интерференции – область, которая является пересечением этих областей, показана более темной штриховкой. Размер интерференционной полосы на экране – это отрезок АВ 1 , обозначим его длину через L .

Рассмотрим треугольники SO 1 O 2 и SAB 1 . Из их подобия следует

Если на участке длиной L содержатся N полос, длиной Dх каждая, то

Ответ : Dх = 0,10 мм; N = 25.

СТОП! Решите самостоятельно: D4, D5.

Поделиться: