Метод математической индукции и его применение к решению задач. Примеры индукции. Метод математической индукции: примеры решения

Видеоурок «Метод математической индукции» помогает освоить метод математической индукции. Видео содержит материал, помогающий понять суть метода, запомнить особенности его применения, научится применять данный метод при решении задач. Цель данного видеопособия - облегчить освоение материала, формировать умения решать математические задачи методом индукции.

Для удержания внимания учащихся на изучении материала используются анимационные эффекты, иллюстрации, представление информации в цвете. Видеоурок освобождает время учителя на уроке для улучшения качества индивидуальной работы, решения других учебных задач.

Понятие метода математической индукции вводится на примере рассмотрения последовательности a n , в которой a 1 =4, а a n+1 = a n +2n+3. В соответствии с общим представлением члена последовательности, определяется, что a 1 =4, a 2 =4+2·1+3=9, a 3 =9+2·2+3=16, то есть последовательность чисел 4, 9, 16,… Предполагается, что для данной последовательности верно a n =(n+1) 2 . Для указанных членов последовательности - первого, второго, третьего - формула верна. Необходимо доказать справедливость данной формулы для любого сколь угодно большого n. Указывается, что в подобных случаях применяется метод математической индукции, помогающий доказать утверждение.

Раскрывается суть метода. Предполагается справедливость формулы для n=k, значение a k =(k+1) 2 . Необходимо доказать, что равенство будет справедливым также при k+1, что значит a k +1 =(k+2) 2 . Для этого в формуле a k +1 =a k +2k+3 заменяем a k на (k+1) 2 . После подстановки и приведения подобных получаем равенство a k +1 =(k+2) 2 . Это дает право утверждать, что справедливость формулы для n делает ее верной и для n=k+1. Рассмотренное доказательство применительно к последовательности a n , которая представлена числами 4, 9, 16,… и общим членом a n =(n+1) 2 дает право утверждать, если формула превращается в верное равенство для n=1, то также для n=1+1=2, и для 3 и т.д., то есть при всяком натуральном n.

Далее суть метода индукции излагается математическим языком. Принцип метода основан на справедливости утверждения, что факт имеет место для произвольного натурального n при выполнении двух условий: 1) утверждение является верным для n=1 2) из справедливости данной формулы для n=k следует справедливость ее для n=k+1. Из данного принципа следует и строение доказательства, с использованием метода математической индукции. Отмечается, что данный метод предполагает для n=1 доказательство справедливости утверждения, а при предположении справедливости доказательства для n=k доказывается, что верно также для n=k+1.

Разбирается пример доказательства формулы Архимеда методом математической индукции. Дана формула 1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6. На экране проводятся вычисления, выводящие справедливость формулы для n=1. Вторым пунктом доказательства является предположение, что для n=k формула справедлива, то есть она принимает вид 1 2 +2 2 +3 2 +…+k 2 =k(k+1)(2k+1)/6.Основываясь на этом, доказывается, что формула верна и для n=k+1. После подстановки n=k+1 получаем значение формулы 1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =(k+1)(k+2)(2k+3)/6. Таким образом, формула Архимеда доказана.

Еще в одном примере рассматривается доказательство кратности 7 суммы 15 n +6 для всякого натурального n. В доказательстве пользуемся методом математической индукции. Сначала справедливость утверждения проверяем для n=1. Действительно, 15 1 +6=21. Затем допускаем справедливость для n=k. Это означает, что 15 k +6 является кратным 7. Подстановкой n=k+1 в формулу доказываем кратность 7 значения 15 k +1 +6. После преобразования выражения получаем: 15 k +1 +6=15 k +1 ·14+(15 k +6). Поэтому сумма15 n +6 является кратной 7.

Видеоурок «Метод математической индукции» доходчиво и детально раскрывает суть и механизм применения метода математической индукции в доказательстве. Поэтому данный видеоматериал может послужить не только наглядным пособием на уроке алгебры, но будет полезен при самостоятельном изучении материала учеником, поможет объяснить тему учителю в ходе дистанционного обучения.

Библиографическое описание: Баданин А. С., Сизова М. Ю. Применение метода математической индукции к решению задач на делимость натуральных чисел // Юный ученый. — 2015. — №2. — С. 84-86..04.2019).



В математических олимпиадах часто встречаются достаточно трудные задачи на доказательство делимости натуральных чисел. Перед школьниками возникает проблема: как найти универсальный математический метод, позволяющий решать подобные задачи?

Оказывается, большинство задач на доказательство делимости можно решать методом математической индукции, но в школьных учебниках уделяется очень мало внимания этому методу, чаще всего приводится краткое теоретическое описание и разбирается несколько задач.

Метод математической индукции мы находим в теории чисел. На заре теории чисел математики открыли многие факты индуктивным путем: Л. Эйлер и К. Гаусс рассматривали подчас тысячи примеров, прежде чем подметить числовую закономерность и поверить в нее. Но одновременно они понимали, сколь обманчивыми могут быть гипотезы, прошедшие «конечную» проверку. Для индуктивного перехода от утверждения, проверенного для конечного подмножества, к аналогичному утверждению для всего бесконечного множества необходимо доказательство. Такой способ предложил Блез Паскаль, который нашел общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число (трактат «О характере делимости чисел).

Метод математической индукции используется, чтобы доказать путем рассуждений истинность некоего утверждения для всех натуральных чисел или истинность утверждения начиная с некоторого числа n.

Решение задач на доказательство истинности некоторого утверждения методом математической индукции состоит из четырех этапов (рис. 1):

Рис. 1. Схема решения задачи

1. Базис индукции . Проверяют справедливость утверждения для наименьшего из натуральных чисел, при котором утверждение имеет смысл.

2. Индукционное предположение . Предполагаем, что утверждение верно для некоторого значения k.

3. Индукционный переход . Доказываем, что утверждение справедливо для k+1.

4. Вывод . Если такое доказательство удалось довести до конца, то, на основе принципа математической индукции можно утверждать, что утверждение верно для любого натурального числа n.

Рассмотрим применение метода математической индукции к решению задач на доказательство делимости натуральных чисел.

Пример 1 . Доказать, что число 5 кратно 19, где n - натуральное число.

Доказательство:

1) Проверим, что эта формула верна при n = 1: число =19 кратно 19.

2) Пусть эта формула верна для n = k, т. е. число кратно 19.

Кратно 19. Действительно, первое слагаемое делится на 19 в силу предположения (2); второе слагаемое тоже делится на 19, потому что содержит множитель 19.

Пример 2. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.

Доказательство:

Докажем утверждение: «Для любого натурального числа n выражение n 3 +(n+1) 3 +(n+2) 3 кратно 9.

1) Проверим, что эта формула верна при n = 1: 1 3 +2 3 +3 3 =1+8+27=36 кратно 9.

2) Пусть эта формула верна для n = k, т. е. k 3 +(k+1) 3 +(k+2) 3 кратно 9.

3) Докажем, что формула верна и для n = k + 1, т. е. (k+1) 3 +(k+2) 3 +(k+3) 3 кратно 9. (k+1) 3 +(k+2) 3 +(k+3) 3 =(k+1) 3 +(k+2) 3 + k 3 + 9k 2 +27 k+ 27=(k 3 +(k+1) 3 +(k+2) 3)+9(k 2 +3k+ 3).

Полученное выражение содержит два слагаемых, каждое из которых делится на 9, таким образом, сумма делится на 9.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Пример 3. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Доказательство:

1) Проверим, что эта формула верна при n = 1: 3 2*1+1 +2 1+2 = 3 3 +2 3 =35, 35 кратно 7.

2) Пусть эта формула верна для n = k, т. е. 3 2 k +1 +2 k +2 делится на 7.

3) Докажем, что формула верна и для n = k + 1, т. е.

3 2(k +1)+1 +2 (k +1)+2 =3 2 k +1 ·3 2 +2 k +2 ·2 1 =3 2 k +1 ·9+2 k +2 ·2=3 2 k +1 ·9+2 k +2 ·(9–7)=(3 2 k +1 +2 k +2)·9–7·2 k +2 .Т. к. (3 2 k +1 +2 k +2)·9 делится на 7 и 7·2 k +2 делится на 7, то и их разность делится на 7.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Многие задачи на доказательство в теории делимости натуральных чисел удобно решать с применением метода математической индукции, можно даже сказать, что решение задач данным методом вполне алгоритмизировано, достаточно выполнить 4 основных действия. Но универсальным этот метод назвать нельзя, т. к. присутствуют и недостатки: во-первых, доказывать можно только на множестве натуральных чисел, а во-вторых, доказывать можно только для одной переменной.

Для развития логического мышления, математической культуры этот метод является необходимым инструментом, ведь ещё великий русский математик А. Н. Колмогоров говорил: «Понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику».

Литература:

1. Виленкин Н. Я. Индукция. Комбинаторика. - М.: Просвещение, 1976. - 48 с.

2. Генкин Л. О математической индукции. - М., 1962. - 36 с.

3. Соломинский И. С. Метод математической индукции. - М.: Наука, 1974. - 63с.

4. Шарыгин И. Ф. Факультативный курс по математике: Решение задач: Учеб.пособие для 10 кл. сред.шк. - М.: Просвещение, 1989. - 252 с.

5. Шень А. Математическая индукция. - М.: МЦНМО,2007.- 32 с.

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

Например, мы каждый день наблюдаем, что Солнце восходит с востока. Поэтому можно быть уверенным, что и завтра оно появится на востоке, а не на западе. Этот вывод мы делаем, не прибегая ни к каким предположениям о причине движения Солнца по небу (более того, само это движение оказывается кажущимся, поскольку на самом деле движется земной шар). И, тем не менее, этот индуктивный вывод правильно описывает те наблюдения, которые мы проведем завтра.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие следовать за тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.


    Суть метода математической индукции

Во многих разделах арифметики, алгебры, геометрии, анализа приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.

Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:

    Предложение А(n) истинно для n=1.

    Из предположения, что А(n) истинно для n=k (где k - любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.

Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.

Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.

Метод математической индукции широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических и многих других задач.


    Метод математической индукции в решении задач на

делимость

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 1 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 2. Доказать истинность предложения

A(n)={число 5 кратно 19}, n - натуральное число.

Решение.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.


    Применение метода математической индукции к

суммированию рядов

Пример 1. Доказать формулу

, n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим


Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .

Решение.

Обозначим искомую сумму , т.е. .

При n=1 гипотеза верна.

Пусть . Покажем, что .

В самом деле,

Задача решена.

Пример 3. Доказать, что сумма квадратов n первых чисел натурального ряда равна .

Решение.

Пусть .

.

Предположим, что . Тогда

И окончательно .

Пример 4. Доказать, что .

Решение.

Если , то

Пример 5. Доказать, что

Решение.

При n=1 гипотеза очевидно верна.

Пусть .

Докажем, что .

Действительно,

    Примеры применения метода математической индукции к

доказательству неравенств

Пример 1. Доказать, что при любом натуральном n>1

.

Решение.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

. (1)

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 3. Доказать, что , где >-1, , n - натуральное число, большее 1.

Решение.

При n=2 неравенство справедливо, так как .

Пусть неравенство справедливо при n=k, где k - некоторое натуральное число, т.е.

. (1)

Покажем, что тогда неравенство справедливо и при n=k+1, т.е.

. (2)

Действительно, по условию, , поэтому справедливо неравенство

, (3)

полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так: . Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).

Пример 4. Доказать, что

(1)

где , , n - натуральное число, большее 1.

Решение.

При n=2 неравенство (1) принимает вид


. (2)

Так как , то справедливо неравенство

. (3)

Прибавив к каждой части неравенства (3) по , получим неравенство (2).

Этим доказано, что при n=2 неравенство (1) справедливо.

Пусть неравенство (1) справедливо при n=k, где k - некоторое натуральное число, т.е.

. (4)

Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.

(5)

Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:

. (6)

Для того чтобы доказать справедливость неравенства (5), достаточно показать, что

, (7)

или, что то же самое,

. (8)

Неравенство (8) равносильно неравенству

. (9)

Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.

Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.

    Метод математической индукции в применение к другим

задачам

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.

Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.

Решение.

При n=2 правильный 2 n - угольник есть квадрат; его сторона . Далее, согласно формуле удвоения


находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2 n - угольника при любом равна

. (1)

Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения


,

откуда следует, что формула (1) справедлива при всех n.

Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Решение.

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 1 А 2 …А n на треугольники.

А n

А 1 А 2

Пусть А 1 А k - одна из диагоналей этого разбиения; она делит n-угольник А 1 А 2 …А n на k-угольник A 1 A 2 …A k и (n-k+2)-угольник А 1 А k A k+1 …A n . В силу сделанного предположения, общее число треугольников разбиения будет равно

(k-2)+[(n-k+2)-2]=n-2;

тем самым наше утверждение доказано для всех n.

Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.

Решение.

Для треугольника это число равно, очевидно, единице: P(3)=1.

Предположим, что мы уже определили числа P(k) для всех k 1 А 2 …А n . При всяком разбиении его на треугольники сторона А 1 А 2 будет стороной одного из треугольников разбиения, третья вершина этого треугольника может совпасть с каждой из точек А 3 , А 4 , …,А n . Число способов разбиения n-угольника, при которых эта вершина совпадает с точкой А 3 , равно числу способов разбиения на треугольники (n-1)-угольника А 1 А 3 А 4 …А n , т.е. равно P(n-1). Число способов разбиения, при которых эта вершина совпадает с А 4 , равно числу способов разбиения (n-2)-угольника А 1 А 4 А 5 …А n , т.е. равно P(n-2)=P(n-2)P(3); число способов разбиения, при которых она совпадает с А 5 , равно P(n-3)P(4), так как каждое из разбиений (n-3)-угольника А 1 А 5 …А n можно комбинировать при этом с каждым из разбиений четырехугольника А 2 А 3 А 4 А 5 , и т.д. Таким образом, мы приходим к следующему соотношению:

Р(n)=P(n-1)+P(n-2)P(3)+P(n-3)P(4)+…+P(3)P(n-2)+P(n-1).

С помощью этой формулы последовательно получаем:

P(4)=P(3)+P(3)=2,

P(5)=P(4)+P(3)P(3)+P(4)+5,

P(6)=P(5)+P(4)P(3)+P(3)P(4)+P(5)=14

и т.д.

Так же при помощи метода математической индукции можно решать задачи с графами.

Пусть на плоскости задана сеть линий, соединяющих между собой какие-то точки и не имеющие других точек. Такую сеть линий мы будем называть картой, заданные точки ее вершинами, отрезки кривых между двумя смежными вершинами - границами карты, части плоскости, на которые она разбивается границами - странами карты.

Пусть на плоскости задана некоторая карта. Мы будем говорить, что она правильно раскрашена, если каждая ее страна закрашена определенной краской, причем любые две страны, имеющие между собой общую границу, закрашены в разные цвета.

Пример 4. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Решение.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Урок № 50

Тема урока : Метод математической индукции.

Цель урока: Познакомиться с сущностью метода математической индукции, научитесь применять этот метод при решении задач на доказательство, продолжить развитие вычислительных навыков, продолжить формирование математической грамотности.

Ход урока.

    Организационный момент. Постановка целей урока

    Активизация опорных знаний.

Определение геометрической прогрессии, формулы n-го члена геометрической прогрессии.

Повторить формулу суммы n первых членов арифметической прогрессии.

Повторить формулу суммы бесконечно убывающей геометрической прогрессии

3. Изучение нового материала

При решении многих задач, при доказательстве справедливости математических предложений, а также при выводе формулы часто используется рассуждение, которое называется методом математической индукции.

Такое рассуждение вы, например, использовали при выводе формулы n -го члена, а также при выводе формулы суммы первых n членов арифметической и геометрической прогрессий.

Сущность этого метода заключается в следующем: если надо установить справедливость некоторого утверждения, в которой фигурирует натуральное число n , то:

1) проверяется, что предполагаемое утверждение имеет место для конкретного значения n (например для n =1).

2) предполагается, что утверждение справедливо при каком-нибудь произвольном значении n = k , и доказывается, что в таком случае оно справедливо и при n = k + 1. Отсюда делается вывод, что утверждение справедливо при любом значении n , ибо справедливость его была обнаружена при n =1, а по доказанному оно верно и при n = 2, а раз справедливо при n = 2, то справедливо и при n = 3 и т.д.

Теперь рассмотрим примеры использования данного метода.

Пример 1. Докажем, что при всяком натуральном n имеет место равенство

Формула верна для n = 1, так как:


Допустим, что формула верна при п = k .

Докажем, что в таком случае она верна и при n = k + 1, т.е.

Непосредственная проверка показала, что формула верна при n =1; следовательно, она будет справедлива также при n = 2, а потому и при n = 3, следовательно, и при п = 4 и вообще при любом натуральном n .

4.Решение задач

249 (а)

В данной задаче требуется доказать формулу n го члена арифметической прогрессии методом математической индукции

    При n =1 имеем а 1 1.

    Допустим, что данная формула верна для k -го члена, т.е имеет место равенство а k = a 1 + d ( k -1)

    Докажем, что в данном случае эта формула верна и для (k +1)-го члена. Действительно,

а k +1 = a 1 + d ( k +1-1) = а 1 + dk

С другой стороны, по определению ариф. прогр. а k +1 = а k + d

Так как левые части двух последних выражений равны = и правые равны:

а k + d = а 1 + dk или а k = a 1 + d ( k -1)

Полученное верное равенство позволяет утверждать, что формула n -го члена арифметической прогрессии подходит для любого натурального n

255

Докажем, что число 11 n+1 +12 2 n -1 при всех натуральных значениях n делиться на 133

    При n =1 имеем 11 1+1 +12 2*1-1 =133, 133 делиться на 133

    Допустим, что при n = k сумма 11 k +1 +12 2 k -1 делиться на 133

    Докажем, что эта сумма делиться на 133 при n = k +1, т.е. 11 k +2 +12 2 k +1 делиться на 133

11 k+2 +12 2k+1 =11*11 k +1 +144*12 k-1 =11*11 k +1 +11*12 2k-1 +133*12 2k-1 =11(11 k+1 +12 2k-1 )+133*12 2k-1

Каждое слагаемое полученной суммы делиться на 133. Следовательно, 11 k +2 +12 2 k +1 тоже делить на 133.

5. Рефлексия

6. Постановка Д/з

§15 решить №251

Индукция есть метод получения общего утверждения из частных наблюдений. В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта. Например, утверждение: «Каждое двузначное чётное число является суммой двух простых чисел,» – следует из серии равенств, которые вполне реально установить:

10=5+5 12=5+7 14=7+7 16=5+11 . . . 92=3+89 94=5+89 96=7+89 98=19+79.

Метод доказательства, при котором проверяется утверждение для конечного числа случаев, исчерпывающих все возможности, называют полной индукцией. Этот метод применим сравнительно редко, поскольку математические утверждения касаются, как правило, не конечных, а бесконечных множеств объектов. Например, доказанное выше полной индукцией утверждение о четных двузначных числах является лишь частным случаем теоремы: «Любое четное число является суммой двух простых чисел». Эта теорема до сих пор ни доказана, ни опровергнута.

Математическая индукция – метод доказательства некоторого утверждения для любого натурального n основанный на принципе математической индукции: «Если утверждение верно для n=1 и из справедливости его для n=k вытекает справедливость этого утверждения для n=k+1, то оно верно для всех n». Способ доказательства методом математической индукции заключается в следующем:

1) база индукции: доказывают или непосредственно проверяют справедливость утверждения для n=1 (иногда n=0 или n=n 0);

2) индукционный шаг (переход): предполагают справедливость утверждения для некоторого натурального n=k и, исходя из этого предположения, доказывают справедливость утверждения для n=k+1.

Задачи с решениями

1. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Обозначим А(n)=3 2n+1 +2 n+2 .

База индукции. Если n=1, то А(1)=3 3 +2 3 =35 и, очевидно, делится на 7.

Предположение индукции. Пусть А(k) делится на 7.

Индукционный переход. Докажем, что А(k+1) делится на 7, то есть справедливость утверждения задачи при n=k.

А(k+1)=3 2(k+1)+1 +2 (k+1)+2 =3 2k+1 ·3 2 +2 k+2 ·2 1 =3 2k+1 ·9+2 k+2 ·2=

3 2k+1 ·9+2 k+2 ·(9–7)=(3 2k+1 +2 k+2)·9–7·2 k+2 =9·А(k)–7·2 k+2 .

Последнее число делится на 7, так как представляет собой разность двух целых чисел, делящихся на 7. Следовательно, 3 2n+1 +2 n+2 делится на 7 при любом натуральном n.

2. Доказать, что при любом натуральном n число 2 3 n +1 делится на 3 n+1 и не делится на 3 n+2 .

Введём обозначение: а i =2 3 i +1.

При n=1 имеем, а 1 =2 3 +1=9. Итак, а 1 делится на 3 2 и не делится на 3 3 .

Пусть при n=k число а k делится на 3 k+1 и не делится на 3 k+2 , то есть а k =2 3 k +1=3 k+1 ·m, где m не делится на 3. Тогда

а k+1 =2 3 k+1 +1=(2 3 k) 3 +1=(2 3 k +1)(2 3 k ·2 –2 3 k +1)=3 k+1 ·m·((2 3 k +1) 2 –3·2 3 k)=3 k+1 ·m·((3 k+1 ·m) 2 –3·2 3 k)=

3 k+2 ·m·(3 2k+1 ·m 2 –2 3 k).

Очевидно, что а k+1 делится на 3 k+2 и не делится на 3 k+3 .

Следовательно, утверждение доказано для любого натурального n.

3. Известно, что х+1/x – целое число. Доказать, что х n +1/х n – так же целое число при любом целом n.

Введём обозначение: а i =х i +1/х i и сразу отметим, что а i =а –i , поэтому дальше будем вести речь о натуральных индексах.

Заметим: а 1 – целое число по условию; а 2 – целое, так как а 2 =(а 1) 2 –2; а 0 =2.

Предположим, что а k целое при любом натуральном k не превосходящем n. Тогда а 1 ·а n – целое число, но а 1 ·а n =а n+1 +а n–1 и а n+1 =а 1 ·а n –а n–1 . Однако, а n–1 , согласно индукционному предположению, – целое. Значит, целым является и а n+1 . Следовательно, х n +1/х n – целое число при любом целом n, что и требовалось доказать.

4. Доказать, что при любом натуральном n большем 1 справедливо двойное неравенство

5. Доказать, что при натуральном n > 1 и |х|

(1–x) n +(1+x) n

При n=2 неравенство верно. Действительно,

(1–x) 2 +(1+x) 2 = 2+2·х 2

Если неравенство верно при n=k, то при n=k+1 имеем

(1–x) k+1 +(1+x) k+1

Неравенство доказано для любого натурального n > 1.

6. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Воспользуемся методом математической индукции.

При n=1 утверждение очевидно.

Предположим, что утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками (смотрите первый рисунок из приведённых ниже).

Восстановим затем отброшенную окружность и по одну сторону от нее, например внутри, изменим цвет каждой области на противоположный (смотрите второй рисунок). Легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками, но только теперь уже при n+1 окружностях, что и требовалось доказать.

7. Выпуклый многоугольник будем называть «красивым», если выполняются следующие условия:

1) каждая его вершина окрашена в один из трёх цветов;

2) любые две соседние вершины окрашены в разные цвета;

3) в каждый из трёх цветов окрашена, по крайней мере, одна вершина многоугольника.

Доказать, что любой красивый n-угольник можно разрезать не пересекающимися диагоналями на «красивые» треугольники.

Воспользуемся методом математической индукции.

База индукции. При наименьшем из возможных n=3 утверждение задачи очевидно: вершины «красивого» треугольника окрашены в три разных цвета и никакие разрезы не нужны.

Предположение индукции. Допустим, что утверждение задачи верно для любого «красивого» n-угольника.

Индукционный шаг. Рассмотрим произвольный «красивый» (n+1)-угольник и докажем, используя предположение индукции, что его можно разрезать некоторыми диагоналями на «красивые» треугольники. Обозначим через А 1 , А 2 , А 3 , … А n , А n+1 – последовательные вершины (n+1)-угольника. Если в какой-либо из трёх цветов окрашена лишь одна вершина (n+1)-угольника, то, соединив эту вершину диагоналями со всеми не соседними с ней вершинами, получим необходимое разбиение (n+1)-угольника на «красивые» треугольники.

Если в каждый из трёх цветов окрашены не менее двух вершин (n+1)-угольника, то обозначим цифрой 1 цвет вершины А 1 , а цифрой 2 цвет вершины А 2 . Пусть k – такой наименьший номер, что вершина А k окрашена в третий цвет. Понятно, что k > 2. Отсечём от (n+1)-угольника диагональю А k–2 А k треугольник А k–2 А k–1 А k . В соответствии с выбором числа k все вершины этого треугольника окрашены в три разных цвета, то есть этот треугольник «красивый». Выпуклый n-угольник А 1 А 2 … А k–2 А k А k+1 … А n+1 , который остался, также, в силу индуктивного предположения, будет «красивым», а значит разбивается на «красивые» треугольники, что и требовалось доказать.

8. Доказать, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы любые две из них имели общую точку.

Проведём доказательство методом математической индукции.

Докажем более общее утверждение: в выпуклом n-угольнике нельзя выбрать больше n сторон и диагоналей так, чтобы любые две из них имели общую точку. При n = 3 утверждение очевидно. Допустим, что это утверждение верно для произвольного n-угольника и, используя это, докажем его справедливость для произвольного (n+1)-угольника.

Допустим, что для (n+1)-угольника это утверждение неверно. Если из каждой вершины (n+1)-угольника выходит не больше двух выбранных сторон или диагоналей, то всего их выбрано не больше чем n+1. Поэтому из некоторой вершины А выходит хотя бы три выбранных стороны или диагонали AB, AC, AD. Пусть АС лежит между АВ и AD. Поскольку любая сторона или диагональ, которая выходит из точки С и отличная от СА, не может одновременно пересекать АВ и AD, то из точки С выходит только одна выбранная диагональ СА.

Отбросив точку С вместе с диагональю СА, получим выпуклый n-угольник, в котором выбрано больше n сторон и диагоналей, любые две из которых имеют общую точку. Таким образом, приходим к противоречию с предположением, что утверждение верно для произвольного выпуклого n-угольника.

Итак, для (n+1)-угольника утверждение верно. В соответствии с принципом математической индукции утверждение верно для любого выпуклого n-угольника.

9. В плоскости проведено n прямых, из которых никакие две не параллельны и никакие три не проходят через одну точку. На сколько частей разбивают плоскость эти прямые.

С помощью элементарных рисунков легко убедится в том, что одна прямая разбивает плоскость на 2 части, две прямые – на 4 части, три прямые – на 7 частей, четыре прямые – на 11 частей.

Обозначим через N(n) число частей, на которые n прямых разбивают плоскость. Можно заметить, что

N(2)=N(1)+2=2+2,

N(3)=N(2)+3=2+2+3,

N(4)=N(3)+4=2+2+3+4.

Естественно предположить, что

N(n)=N(n–1)+n=2+2+3+4+5+…+n,

или, как легко установить, воспользовавшись формулой суммы n первых членов арифметической прогрессии,

N(n)=1+n(n+1)/2.

Докажем справедливость этой формулы методом математической индукции.

Для n=1 формула уже проверена.

Сделав предположение индукции, рассмотрим k+1 прямых, удовлетворяющих условию задачи. Выделим из них произвольным образом k прямых. По предположению индукции они разобьют плоскость на 1+ k(k+1)/2 частей. Оставшаяся (k+1)-я прямая разобьётся выделенными k прямыми на k+1 частей и, следовательно, пройдёт по (k+1)-й части, на которые плоскость уже была разбита, и каждую из этих частей разделит на 2 части, то есть добавится ещё k+1 часть. Итак,

N(k+1)=N(k)+k+1=1+ k(k+1)/2+k+1=1+(k+1)(k+2)/2,

что и требовалось доказать.

10. В выражении х 1:х 2: … :х n для указания порядка действий расставляются скобки и результат записывается в виде дроби:

(при этом каждая из букв х 1 , х 2 , … , х n стоит либо в числителе дроби, либо в знаменателе). Сколько различных выражения можно таким образом получить при всевозможных способах расстановки скобок?

Прежде всего ясно, что в полученной дроби х 1 будет стоять в числителе. Почти столь же очевидно, что х 2 окажется в знаменателе при любой расстановке скобок (знак деления, стоящий перед х 2 , относится либо к самому х 2 , либо к какому-либо выражению, содержащему х 2 в числителе).

Можно предположить, что все остальные буквы х 3 , х 4 , … , х n могут располагаться в числителе или знаменателе совершенно произвольным образом. Отсюда следует, что всего можно получить 2 n–2 дробей: каждая из n–2 букв х 3 , х 4 , … , х n может оказаться независимо от остальных в числителе или знаменателе.

Докажем это утверждение по индукции.

При n=3 можно получить 2 дроби:

так что утверждение справедливо.

Предположим, что оно справедливо при n=k и докажем его для n=k+1.

Пусть выражение х 1:х 2: … :х k после некоторой расстановки скобок записывается в виде некоторой дроби Q. Если в это выражение вместо х k подставить х k:х k+1 , то х k окажется там же, где и было в дроби Q, а х k+1 будет стоять не там, где стояло х k (если х k было в знаменателе, то х k+1 окажется в числителе и наоборот).

Теперь докажем, что можно добавить х k+1 туда же, где стоит х k . В дроби Q после расстановки скобок обязательно будет выражение вида q:х k , где q – буква х k–1 или некоторое выражение в скобках. Заменив q:х k выражением (q:х k):х k+1 =q:(х k ·х k+1), мы получим, очевидно, ту же самую дробь Q, где вместо х k стоит х k ·х k+1 .

Таким образом, количество всевозможных дробей в случае n=k+1 в 2 раза больше чем в случае n=k и равно 2 k–2 ·2=2 (k+1)–2 . Тем самым утверждение доказано.

Ответ: 2 n–2 дробей.

Задачи без решений

1. Доказать, что при любом натуральном n:

а) число 5 n –3 n +2n делится на 4;

б) число n 3 +11n делится на 6;

в) число 7 n +3n–1 делится на 9;

г) число 6 2n +19 n –2 n+1 делится на 17;

д) число 7 n+1 +8 2n–1 делится на 19;

е) число 2 2n–1 –9n 2 +21n–14 делится на 27.

2. Докажите, что (n+1)·(n+2)· … ·(n+n) = 2 n ·1·3·5·…·(2n–1).

3. Доказать неравенство |sin nx| n|sin x| для любого натурального n.

4. Найдите натуральные числа a, b, c, которые не делятся на 10 и такие, что при любом натуральном n числа a n + b n и c n имеют одинаковые две последние цифры.

5. Доказать, что если n точек не лежат на одной прямой, то среди прямых, которые их соединяют, не менее чем n различных.

Поделиться: