Цитогенетические механизмы оплодотворения. Оплодотворение, его фазы, биологическая сущность. Как происходит оплодотворение яйцеклетки

Оплодотворение – это сложный механизм последовательных процессов, только при строгом соблюдении условий которого можно получить желанную беременность. Так, женщина должна иметь созревшую яйцеклетку, проходимые маточные трубы, достаточную толщину слизистой оболочки матки, которая должна быть готова к прикреплению оплодотворенной яйцеклетки. После имплантации женский организм должен обеспечить гормональную поддержку беременности.

У мужчины должно быть достаточное количество морфологически нормальных подвижных зрелых сперматозоидов, способных через шейку матки проникнуть в полость матки, маточную трубу и оплодотворить яйцеклетку.

У женщин половые клетки называются яйцеклетки, а у мужчин - сперматозоиды.

Яйцеклетка напоминает обычную клетку, имеет округлую форму, включает ядро, имеющем в своем составе ДНК (материнский генетический материал), цитоплазму и оболочку. Клетка окружена так называемым «лучистым венцом», состоящим из защитных клеток.

Сперматозоид имеет принципиально иное строение. Это обусловлено выполняемой им функцией: ему необходимо преодолеть расстояние от шейки матки до яичникового отдела маточной трубы. Сперматозоид имеет головку (в которой содержится ДНК: отцовский генетический материал), шейку и хвостик. На головке у сперматозоида имеется специальная структура – акросома, содержащая ферменты, способствующие проникновению сперматозоида в яйцеклетку.

Принципиальное отличие женского и мужского организмов заключается в том, что запас яйцеклеток в женском организме строго ограничен и закладывается во время внутриутробного развития девочки. Когда врожденный запас фолликулов истощается, женщина утрачивает репродуктивную функцию (менопауза). В мужском организме процесс образования сперматозоидов не зависит от возраста и носит постоянный характер.

Физиологический процесс оплодотворения

Процесс оплодотворения полностью зависит от гормональной регуляции, психоэмоционального состояния женского организма, факторов окружающей среды и др. Менструальный цикл условно начинается с первого дня менструации, когда происходит «обнуление» гормонального фона. Именно тогда начинается рост когорты фолликулов, из которых к 5-7 дню менструального цикла происходит отбор одного фолликула. По достижении фолликулом размеров 18-25 мм (обычно на 12-14 день менструального цикла) происходит овуляция.

В результате происходит выход яйцеклетки в брюшную полость, откуда при помощи фимбрий (особых выростов маточной трубы) попадает в яичниковый отдел маточной трубы, где происходит ее встреча со сперматозоидами, которые, в свою очередь, после эякуляции проделали долгий путь в течении нескольких часов по женским половым путям. В результате этой встречи, при наличии благоприятных условий среды, происходит оплодотворение.

В дальнейшем, уже делящийся эмбрион (зигота - содержащий материнский и отцовский генетический материал) совершает путь по маточным трубам к матке за счет перистальтических сокращений стенок маточных труб, движения ворсинок и капиллярного тока жидкости. В дальнейшем, попадая в полость матки, эмбрион прикрепляется к одной и стенок матки, происходит имплантация и дальнейшее развитие эмбриона.

Условия, необходимые для успешного процесса оплодотворения:

созревание фолликула в яичнике, готовая к оплодотворению яйцеклетка;

овуляция, достаточная функция желтого тела;

нормальная концентрация качественных активных сперматозоидов;

проникновение сперматозоидов в маточные трубы, их продвижение по женским половым путям, способность к оплодотворению;

Оплодотворение, исходный момент возникновения новой генетической индивидуальности, представляет собой процесс соединения женской и мужской гамет.

В результате оплодотворения возникает одноклеточный зародыш с диплоидным набором хромосом и активируется цепь событий, лежащих в основе развития организма.

Биологическое значение оплодотворения огромно: будучи предпосылкой развития новой индивидуальности, оно вместе с тем является условием продолжения жизни и эволюции вида.

Следует подчеркнуть, что оплодотворение представляет собой не одномоментный акт, но именно процесс, занимающий более или менее продолжительный отрезок времени. Это многоступенчатый процесс, в котором различаются следующие этапы: привлечение сперматозоида яйцом, связывание гамет и, наконец, слияние мужских и женских половых клеток. В научной литературе события, связанные со сближением гамет иногда называют осеменением различая наружное и внутреннее осеменение, в зависимости от того, выводятся мужские половые клетки в окружающую среду или в половые органы женской особи. Наружное осеменение характерно для животных, обитающих в водной среде. Внутреннее осеменение присуще главным образом наземным животным, хотя оно достаточно часто встречается и у обитателей водной среды. Осеменение может быть свободным при котором все области ооцита доступны спермиям, но может быть и ограниченным, когда на поверхности яйцеклетки имеется плотная оболочка с микропиле. При внутреннем осеменении у ряда животных мужские гаметы передаются самкам в виде сперматофоров , особых капсул, содержащих сперматозоиды. Сперматофоры сначала выводятся в окружающую среду, а затем тем или иным способом переносятся в половые пути самки.

Соединение гамет предопределяет возможность кариогамии , или слияния ядер. Благодаря кариогамии происходит объединение отцовских и материнских хромосом, ведущее к образованию генома новой особи. В результате слияния гамет возникает диплоидная зигота, восстанавливается способность к репликации ДНК и начинается подготовка к делениям дробления. Механизмы активации яйца к развитию относительно автономны. Их включение может быть осуществлено и помимо оплодотворения, что происходит, например, при естественном или искусственном девственном развитии, или партеногенезе .

Интерес к проблеме оплодотворения выходит далеко за рамки собственно эмбриологии. Слияние гамет - плодотворно используемая модель для изучения тонких молекулярных и клеточных механизмов специфического взаимодействия клеточных мембран; для изучения молекулярных основ активации метаболизма и пролиферации соматических клеток. Общебиологический интерес представляет и то, что оплодотворение являет собой яркий и, может быть, уникальный пример полного обращения клеточной дифференциации. Действительно, высокоспециализированные половые клетки не способны к самовоспроизведению. Они гаплоидны и не могут делиться. Однако после слияния они превращаются в тотипотентную клетку, которая служит источником формирования всех клеточных типов, присущих данному организму.

История открытия оплодотворения теряется в глубине веков. Во всяком случае, в XVIII столетии итальянский естествоиспытатель аббат Лаццаро Спалланцани (1729-1799) экспериментально доказал, что оплодотворение зависит от наличия спермы, и впервые осуществил искусственное оплодотворение яиц лягушки, смешивая их со спермой, полученной из семенников. Тем не менее смысл происходящих при этом событий оставался неясным практически до последней четверти XIX века, когда Оскар Гертвиг (1849-1922) в конце 1870-х годов, изучая оплодотворение у морских ежей, пришел к заключению, что сущность этого процесса состоит в слиянии ядер половых клеток. Вместе с работами бельгийца Эдуарда ван Бенедена (1883, аскарида), немецкого ученого Теодора Бовери (1887, аскарида), швейцарского зоолога Германа Фоля (1887, морская звезда) исследования О. Гертвига заложили основу современных представлений об оплодотворении. Следует подчеркнуть, что именно эти работы послужили веским основанием для предположения о том, что ядро является носителем наследственных свойств. Именно Т. Бовери (1862-1915) в серии блестящих цитологических исследований обосновал в конце 1880-х годов теорию индивидуальности хромосом и создал основу цитогенетики.

Вскоре после выяснения сущности оплодотворения исследователи сосредоточили внимание на механизмах, лежащих в основе этого процесса. Эта область исследований сохраняет актуальность и в наше время. Пальма первенства в построении теории оплодотворения принадлежит американскому исследователю Франку Лилли (1862-1915). Изучая свойства «яичной воды», т. е. морской воды, в которой некоторое время находились неоплодотворенные яйца морского ежа Arbacia или полихеты Nereis, Лилли обнаружил, что из яиц выделяется вещество, которое обладает способностью склеивать спермин в комки. Наблюдаемая агглютинация оказалась видоспецифичной, и Лилли назвал фактор агглютинации, выделяемый неоплодотворенным яйцом, веществом оплодотворения, или фертилизином (от англ. fertilization - оплодотворение). Суть выдвинутой Лилли теории оплодотворения состоит в признании того, что в периферической области яйца находится фертилизин, который имеет сродство к поверхностным рецепторам спермия (антифертилизин спермия). Благодаря этому сродству фертилизин связывает, согласно Лилли, спермии. Однако, чтобы претендовать на универсальность и объяснить не только механизм соединения гамет, но и причины агглютинации спермиев, возможность предотвращения полиспермии, высокую специфичность процесса оплодотворения и т д., теория фертилизина нуждалась в многочисленных допущениях, под гнетом которых она в конце концов и угасла.

Уже в ходе ранних исследований оплодотворения возникло представление о гамонах - веществах, которые обеспечивают активацию или блокирование отдельных этапов оплодотворения. В соответствии с их происхождением различали гиногамоны, выделяемые яйцеклетками, и андрогамоны, вырабатываемые мужскими половыми клетками. Так, полагали, что гиногамон 1, диффундируя из яйца, активирует движение сперматозоида, преодолевая действие андрогамона 1, который ингибирует движение сперматозоида. Гиногамон 2 - синоним фертилизина, а андрогамон 2 - антифертилизина спермия.

В пятидесятые годы XX столетия идея о взаимодействии фертилизина с антифертилизином трансформировалась в гипотезу специфического фагоцитоза. Согласно этой концепции, наличие на поверхности яйца и спермия взаимодействующих молекул обеспечивает комплементарную реакцию по принципу застежки «молнии», благодаря которой спермий оказывается поглощенным яйцом.

Несмотря на известную умозрительность, эти и многие другие подобные гипотезы о механизмах взаимодействия сперматозоидов и яиц сыграли свою положительную роль, обнаружив, во-первых, существование целого семейства специфических молекул на поверхности взаимодействующих гамет и, во-вторых, положив начало планомерным исследованиям природы этих молекул.

Вторая половина прошлого столетия - период расцвета ультраструктурных и молекулярно-биологических исследований, которые выявили большое разнообразие конкретных форм клеточного взаимодействия при оплодотворении. Стало ясно, что универсальная теория оплодотворения, если и может существовать, то только как свод некоторых самых общих принципов организации этого процесса.

Конкретные механизмы оплодотворения зависят от множества факторов. Достаточно сказать о своеобразии оплодотворения у животных с наружным и внутренним осеменением. Очевидно, что определенные различия процесса оплодотворения обусловлены и тем, что у разных животных проникновение спермия в яйцо происходит на разных этапах оогенеза. У многих аннелид, моллюсков, нематод и ракообразных сперматозоид проникает в ооциты первого порядка на стадии профазы. У других кольчатых червей, моллюсков и у насекомых - на стадии метафазы первичного ооцита. Для многих позвоночных характерно осеменение на стадии метафазы вторичного ооцита. У некоторых кишечнополостных и у морских ежей оплодотворение происходит на стадии зрелого яйца уже после завершения делений созревания и выделения направительных, или редукционных телец. Наконец, нельзя не вспомнить и разнообразие типов сперматозоидов, среди которых имеются жгутиковые формы и спермин без жгутиков (например, амебоидные спермин нематод), с акросомой и без нее, имеющие акросомную нить и лишенные ее. Естественно, что в каждом таком случае конкретные механизмы, обеспечивающие тонкое взаимодействие между половыми клетками, различаются.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Как известно, после достижения половой зрелости у каждой девушки, а затем женщины один раз в месяц происходит . Это довольно-таки сложный физиологический процесс, в ходе которого зрелая яйцеклетка выходит из яичника в маточную трубу. Именно в ней и происходит оплодотворение.

Особенности овуляции

Слияние сперматозоидов с яйцеклеткой происходит в течение двенадцати часов после того, как она выходит в маточную трубу. Время овуляции рассчитать несложно, и одним из самых достоверных методов его определения является , то есть температуры в прямой кишке. Эта процедура должна ежедневно проводиться в течение нескольких месяцев. Температура измеряется в одно и то же время, рано утром, не вставая в постели, с помощи самого обычного градусника.

Если занести данные в график, можно увидеть кривую созревания своей яйцеклетки. Перед началом менструации температура максимальное снижается, а момент овуляции наступает либо в последний день пониженной температуры, либо в первый день ее повышения. Самым благоприятным днем для оплодотворения яйцеклетки является тот, когда наступает овуляция, либо несколько дней до ее начала.

Это объясняется тем, что сперматозоиды, которые попали в полость маточной трубы, остаются жизнеспособными в течение нескольких суток. Зная день наступления овуляции, можно не только зачать ребенка, но также попробовать . Для этого существуют различные и календари зачатия.

Механизм оплодотворения

Оплодотворение яйцеклетки является длительным и сложным механизмом, во время которого происходит соединение мужской и женской половых клеток. Семенная жидкость, которая во время полового акта попадает в женское влагалище, содержит примерно от 60 до 150 млн. зрелых сперматозоидов. За счет того непрерывного сокращения матки, семенная жидкость ей активно захватывается, в связи с чем подвижные сперматозоиды продвигаются в полость матки в течение нескольких минут, а затем достигают дальних отделов маточной трубы, где располагается яйцеклетка.

Несмотря на то, что мужских половых клеток много, они встречают множество препятствий на своем пути (кислая среда влагалища, слизистое содержимое канала шейки матки и так далее), и только один самый быстрый сперматозоид сможет оплодотворить яйцеклетку. Правда, многочисленными исследованиями доказано, что в яйцеклетку могут проникнуть и несколько сперматозоидов, но ядро с наследственной информацией яйцеклетки может соединиться с ядром только одного сперматозоида, в результате чего образуется только один эмбрион. Конечно, бывают случаи, когда в процессе оплодотворения получается несколько эмбрионов, и в итоге рождаются близнецы.

Сперматозоид проходит через прочные оболочки женской клетки благодаря растворению ферментами, которые содержатся в акросомной капсуле его головки. Вступая с контакт с яйцеклеткой, капсула разрывается, и из нее к оболочкам начинает прикрепляться акросомная нить и выделяться вещества, которые разрушают оболочку яйцеклетки. Растворив небольшой участок, акросомная нить проникает вглубь яйцеклетки и плотно соединиться с ее внутренним содержимым. Потом ядро и внутреннее содержимое головки сперматозоида всасывается внутрь женской половой клетки.

Изменения в яйцеклетке

Полное проникновение сперматозоида в женскую половую клетку запускает процесс существенного изменения физиологических процессов в ней. Оболочки яйцеклетки становятся намного более проницаемыми, что очень важно для активного накопления питательных веществ, при помощи которых станет развиваться эмбрион. Начинают более активно вырабатываться белки, кальций и углеводы, впитывается максимальное количество кальция и фосфора - в общем, ведется подготовка к развитию плода.

Наиболее важные и значительные для будущего ребенка события происходят в течение примерно двенадцати часов после проникновения сперматозоида в яйцеклетку. В это время ядра мужской и женской клеток, несущие в себе всю наследственную информацию, соединяются. Образуется новая клетка с полным набором хромосом, из которой потом разовьется эмбрион и в итоге родится новый человек.

После проникновения в половые пути самки, сперматозоид проявляет оплодотворяющую способность после процесса Капоцитации . Его суть: головка сперматозоида имеет участки, содержащие фермент гликозилтрансферазу. Но этот фермент блокирован галактозом и N-ацетилглюкозамином. Гликопротеиды, выделяемые в половые пути самки, освобождают блокирующие ферменты. Тогда сперматозоид способен узнавать N-ацетилглюкозаминовые остатки в зоне пиллюцида (оболочка, покрытая слоем фолликулярных клеток). Тогда фермент находит потенциальный субстрат. Далее идет 2-й процесс, инициируемый оболочками яйцеклетки – Акросомальная реакция. Ее механизм: после контакта со студенистой оболочкой, в сперматозоид поступают ионы Са. При внешнем осеменении ионы Са поступают из воды, а при внутреннем из эндоплазматического ретикулюма. Параллельно идет процесс перестройки мембранных процессов, обеспечивающих поступление внутрь Na и протонов во вне. Так идет повышение рН, приводящее к полимеризации актина. Далее активизируется домеиновая АТФаза. Потом происходит экзоцитоз акросомального пузырька – двойная мембрана заменяется на одинарную. На образовавшемся акросомальном выросте появляется белок бендин (узнает рецепторы на яйцеклетке). У хвостатых амфибий, реп­тилий и птиц в яйцо довольно часто проникает не один, а не­сколько сперматозоидов, и у яиц этих животных выработались специальные механизмы, инактивирующие ядра избыточных спер­матозоидов. У большинства других позвоночных Полиспермия Предотвращается поверхностными реакциями, которые препятству­ют проникновению в яйцо более чем одного сперматозоида. В яй­цах таких животных имеется поверхностный слой кортикальных гранул; в яйцах тех позвоночных, которые допускают проникнове­ние нескольких сперматозоидов, таких гранул нет. У позвоночных, допускающих проникновение в яйцо лишь од­ного сперматозоида, первая реакция, возникающая в ответ на слияние сперматозоида с яйцом, состоит в быстром изменении электрических свойств плазматической мембраны яйца. Положительный мембранный потенциал препят­ствует возникновению полиспермии,- тогда как снижение потен­циала у только что оплодотворенного яйца делает ее возможной. Акросома сперматозоида содержит гидро - и ротелитические ферменты, например, акрозин, сходный с хемотрипсином. Акросома содержит фермент (георуронидаза), расщепляющая лучистый венец. Эти ферменты обеспечивают проникновение сперматозоида в яйцеклетку. В зоне контакта происходит дезантеграция мембраны яйцеклетки и сперматозоида. В зоне контакта образуются мицеллы с образованием бреши и содержимиое сперматозоида проникает внутрь. Событием, препятствующим полиспермии и возни­кающим спустя несколько минут после проникновения в яйцо спер­матозоида, является Кортикальная реакция. Кортикальные грану­лы, начиная с той точки, в которой произошло слияние яйца со сперматозоидом, перемещаются к внутренней поверхности плаз­матической мембраны, сливаются с ней, а затем выделяют свое содержимое в пространство, окружающее яйцо. После высвобождения содержимого кортикальных гранул про­никновение в яйцо других сперматозоидов блокируется изменения­ми в зоне пиллюцида и плазматической мембраны яйца. Механизм корт. реак. похож на акросомальную реакцию – экзоцитоз ферментов в пространство между плазматической мембраной и желтковой оболочкой. В этих гранулах есть полисахариды, обеспечивающие проникновение воды. Кроме воды попадают и другие вещества. Гиолин создает на мембране гиолиновый слой, обеспечивающий удержание бластомеров при дроблении. Еще образует защиту от сперматозоидо. У млеков есть реакция зоны, когда сперматозоиды проникают внутрь, на яйцеклетке изменяются рецепторы и не дают проникновению другим сперматозоидам. После проникновения сперматозоида в яйцеклетку происходит деконденсация генетического материала и разрушение ядерной оболочки. Вокруг деконденсированного генетического материала образуется новая оболочка. Образуется 2 пронуклюуса, совершающие движения – пляска пронуклюксов. После этого оболочки ядер дезонтегрируются и хромосомы удваиваются с последующим митотическим деление. Это последний этап, имеющий препятствие для гибридизации.

Механизмы оплодотворения

Процесс оплодотворения у животных можно разделить на три фазы. Первая фаза характеризуется сближением сперматозоида с яйцеклеткой до их контакта. В эту фазу осуществляются дистантные взаимодействия между половыми клетками. Вторая фаза начинается с того, что сперматозоид прикрепляется к поверхности яйцеклетки. В это время наблюдаются контактные взаимодействия между половыми клетками. Третья фаза процесса оплодотворения начинается после проникновения сперматозоида в яйцо и завершается объединением ядер мужской и женской половых клеток. Эта фаза характеризует взаимодействие внутри яйца.

Дистантные взаимодействия между половыми клетками

Дистантные взаимодействия обеспечиваются рядом неспецифических факторов, среди которых особое место принадлежит химическим веществам, которые вырабатываются половыми клетками. Известно, что половые клетки выделяют гамоны или гормоны гамет. Гамоны, которые вырабатываются яйцеклетками, называют гиногамонами, а спрематозоидами - андрогамонами. Женские половые клетки выделяют две группы гамонов: гиногамоны I и гиногамоны II, оказывающие влияние на физиологию мужских половых клеток. Сперматозоиды вырабатывают андрогамоны I и II.

Некоторые из этих химических веществ направлены на повышение вероятности встречи сперматозоида с яйцеклеткой. Известно, что движение сперматозоида к яйцу осуществляется через посредство хемотаксиса - движение сперматозоидов по градиенту концентрации некоторых химических веществ, выделяемых яйцеклеткой. Хемотаксис достоверно показан для многих групп животных, особенно беспозвоночных: моллюсков, иглокожих и полухордовых. Хемотактические факторы выделены из яйцеклеток морских ежей: у одних видов - это пептид, состоящий из десяти аминокислот, и назван сперактом, у других видов - пептид состоит из четырнадцати аминокислот и, получил название резакт. При добавлении экстрактов этих веществ в морскую воду, сперматозоиды соответствующего вида начинают двигаться вверх по градиенту их концентрации.

В движении сперматозоидов млекопитающих по верхним отделам яйцевода существенное значение имеет явление реотаксиса - способность двигаться против встречного течения жидкости яйцевода.

После того, как сперматозоид пройдет сквозь защитные оболочки яйца и вступит в контакт с его плазматической мембраной, начинаются контактные взаимодействия между половыми клетками, которые приведут к проникновению сперматозоида в цитоплазму яйца.

Контактные взаимодействия между половыми клетками

Контакт сперматозоида с мембраной яйцеклетки приводит к активации половых клеток. Реакция активации связана со сложными морфологическими, биохимическими и физико-химическими изменениями в половых клетках. Активация мужской половой клетки, в первую очередь связана с акросомной реакцией, а женской - с кортикальной реакцией.

Акросомная реакция характеризуется быстрыми изменениями в акросомном аппарате головки сперматозоида, сопровождающимися высвобождением заключенных в ней спермолизинов и выбрасыванием акросомной нити в сторону поверхности яйца.

Рассмотрим общую схему акросомной реакции у представителей разных групп морских беспозвоночных - иглокожих, кольчатых червей, двустворчатых моллюсков, кишечно-дышащих и др.

На вершине головки сперматозоида, плазматическая мембрана и, прилежащая к ней часть мембраны акросомного пузырька, растворяются (лизируются). Свободные края обеих мембран сливаются между собой в единую мембрану. Из обнажившейся акросомы выходят спермолизины в окружающую среду и приводят к растворению яйцевых оболочек в месте контакта со сперматозоидом. После этого внутренняя мембрана акросмного аппарата выпячивается наружу и образует вырост в виде трубочки (акросомная нить). Акросомная нить удлиняется, проходит через разрыхленную область дополнительных яйцевых оболочек и вступает в контакт, с плазматической мембраной яйцеклетки. В области контакта акросомной нити с поверхностью яйца плазматические мембраны сливаются и содержимое акросомной трубочки (нити) соединяется с цитоплазмой яйцеклетки. В результате слияния мембран образуется цитоплазматический мостик. Чуть позже по цитоплазматическому мостику в цитоплазму яйца перейдут ядро и центриоль сперматозоида. Акросомная реакция завершается встраиванием мембраны сперматозоида в мембрану яйцеклетки. С этого момента сперматозоид и яйцеклетка являются уже единой клеткой (Рис.7, 8, 9.).

Рис.7. Акросомная реакция сперматозоида: А - В - слияние наружной мембраны акросомы и мембранысперматозоида. Излияние содержимого акросомного пузырька; 1 - мембрана акросомы; 2 - мембрана сперматозоида; 3 - глобулярный актин; 4 - ферменты акросомы; Г - Д - полимеризация актина и образование акросомного выроста; 5 - биндин; 6 - вырост акросомы; 7 - актиновые микрофиломенты; 8 - ядро сперматозоида. (по Голиченкову)

При общем сходстве акросомной реакции, у этих животных между ними имеются и определенные различия. Так, у иглокожих в отличие у червей и моллюсков в акросомном аппарате не содержатся литические ферменты. У большинства изученных животных образуется одна акросомная нить, а у некоторых червей - несколько таких нитей.

Рис.8. Последовательность акросомной реакции у морского ежа. (по Голиченкову)

При оплодотворении у позвоночных животных также происходит акросомная реакция. У низших позвоночных (миноги, и осетровые рыбы), она во многом сходна с акрсомной реакцией спермиев беспозвоночных животных.

Рис.9. Схема процессов, происходящих при взаимодействии мембран яйцеклетки и сперматозоида в ходе оплодотворения (по Гилберт).

У акуловых рыб, рептилий и птиц, яйца которых одеты плотными оболочками, соединение гамет происходит раньше, чем эти оболочки сформируются. У этих животных акросома продолжает выполнять свою первоначальную роль и, хорошо развита.

Акросомная реакция у млекопитающих отличается от такой реакции у ьеспозвоночных и низших позвоночных. В спермии млекопитающих акросомная реакция протекает без образования акросомного выроста, Приблизившись к поверхности яйца, спермий сливается с его плазматической мембраной боковой поверхностью головки.

У насекомых и высших рыб соединение половых клеток происходит после того, как полностью образуются плотные дополнительные яйцевые оболочки. В этих случаях сперматозоид проникает в яйцо через микропиллярные каналы и соединение гамет происходит без участия акросомы.

Активация яйца. Кортикальная реакция. После того, как мужская половая клетка прикрепится к поверхности яйца и ее акросомная нить вступит в контакт с поверхностью ооплазмы, происходит активация яйцеклетки. Активация яйца связана со сложными изменениями самых разных сторон его деятельности. Наиболее ярким внешним проявлением активации являются изменения поверхностного слоя ооплазмы, получившие название кортикальной реакции (Рис. 10).


Рис.10. Кортикальная реакция в яйце морского ежа А-приближение спермия к яйцу; Б-Г-последовательные стадии кортикальной реакции; показаны волна выделения содержимого кортикальных гранул, распространяющаяся от места проникновения спермия, отделение оболочки и образование перивителлинового пространства, формирование гиалтнового слоя; гс-гиалиновый слой; жо-желточная о болочка кг-кортикальная гранула; оо-оболочка оплодотворения пм-плазматическая мембрана; пп-перивителлиновое пространство, заполненное перивителлиновой жидкостью (по Гинзбург).

Рассмотрим последовательные стадии кортикальной реакции на примере наиболее полно, изученных яйцеклеток морского ежа. Кортикальная реакция начинается с того, что мембрана, ограничивающая каждую кортикальную гранулу, слипается с плазматической мембраной яйца. В этом месте гранулы открываются, и их содержимое изливается в желточную оболочку. Процесс секреции содержимого кортикальных гранул начинается от места прикрепления сперматозоида и волнообразно распространяется во все стороны до тех пор, пока не охватит всю поверхность яйца. Часть выделенного содержимого кортикальных гранул оводняется и растворяется, образуя перивителлиновую жидкость, которая оттесняет желточную оболочку от плазмолеммы яйца, приводя к увеличению объема перивителлинового пространства. Другая часть содержимого кортикальных гранул сливается с желточной оболочкой, которая при этом утолщается и преобразуется в оболочку оплодотворения. Часть кортикальных гранул, не участвующих в образовании оболочки оплодотворения, превращаются в плотный слой, называемый гиалиновым слоем, расположенным над плазматической мембраной. После того, как сформируется оболочка оплодотворения, другие сперматозоиды лишаются возможности проникнуть в ооплазму яйца.

В последние годы был изучен химический состав содержимого кортикальных гранул. Показано, что содержимое кортикальных гранул содержит следующие вещества: а) протеолитический фермент (актеллиновая деламиназа), разрывающий связи между клеточной оболочкой и плазматической мембраной яйца; б) протеолетический фермент (сперм-рецепторная гидролаза), который освобождает осевшую на желточной оболочке сперму; в) гликопротеид, втягивающий воду в пространство между желточной оболочкой и плазматической мембраной, вызывая их расслоение; г) фактор, способствующий образованию оболочки оплодотворения; д) структурный белок гиалин, участвующий в образовании гиалинового слоя.

Каково биологическое значение кортикальной реакции?

Во-первых, кортикальная реакция является тем механизмом, который защищает яйцо от проникновения сверхчисленных сперматозоидов.

Во-вторых, образующаяся в результате кортикальной реакции перивителлиновая жидкость, служит специфической средой, в которой протекает развитие зародыша.

При активации яйца наблюдаются и другие изменения самых разных сторон его деятельности.

Во-первых, снижается тормоз, который блокировал мейоз и, ядерные преобразования продолжаются с той самой стадии, на которой они остановились к моменту выхода яйца из яичника.

Во-вторых, наблюдается серия биохимических изменений, сопровождаемых усилением углеводного обмена, повышением синтеза липидов и белков.

В-третьих, резко возрастает проницаемость клеточной мембраны для ионов натрия и калия.

События, происходящие в яйце после проникновения сперматозоида

После того, как плазматическая мембрана акросомной нити спермия сливается с плазматической мембраной яйца, спермий утрачивает свою подвижность и его вовлечение внутрь яйца происходит благодаря действию сил, исходящих из активированного яйца. Обычно сперматозоид втягивается в ооплазму вместе с хвостом, но иногда хвостовой отдел отбрасывается. Однако и в тех случаях, когда жгутик проникает в яйцо, он отбрасывается и рассасывается.

Высоко-конденсированное ядро сперматозоида начинает набухать, хроматин разрыхляется и ядро превращается в своеобразную структуру, называемым мужским пронуклеусом.

Аналогичные изменения происходят и в ядре яйцеклетки, в результате чего образуется женский пронуклеус. В период формирования пронуклеусов, вдоль хромосом происходит репликация ДНК. В дальнейшем пронуклеусы начинают перемещаться к центру яйцеклетки. Ядерные оболочки, окружающие каждого из пронуклеусов разрушаются, пронуклеусы сближаются и происходит кариогамия. Кариогамия - это последняя стадия оплодотворения. При объединении пронуклеусов образуется ядро с диплоидным набором хромосом. Затем хромосомы занимают экваториальное положение, и наступает первое деление зиготы.

Ооплазматическая сегрегация. После проникновения сперматозоида начинаются интенсивные перемещения цитоплазмы яйцеклетки (ооплазмы). При этом происходит расслоение, отмешивание различных составных частей ооплазмы, что обозначается как ооплазматическая сегрегация. В ходе этого процесса намечаются основные элементы пространственной организации зародыша. Поэтому данный этап развития называют также проморфогенезом: имеется в виду, что в это время как бы расставляются вехи для будущих морфогенетических процессов.

Моно- и полиспермия

Проникновение в яйцеклетку одного сперматозоида, получило название, физиологической моноспермии. Моноспермия присуща всем группам животных с наружным осеменением и многим животным с внутренним осеменением (тем, которые подобно, млекопитающим имеют яйцеклетки небольшого размера).

У других животных, например, у некоторых членистоногих (насекомые), моллюсков (класс брюхоногих), хордовых (акулообразные рыбы, хвостатые амфибии, рептилии и птицы) в яйцеклетку проникает большое количество сперматозоидов. Такое явление получило название физиологической полиспермии. Однако и в этом случае с ядром яйцеклетки соединяется только ядро одного сперматозоида, тогда как остальные разрушаются (рис.11).

Рис. 11. Полиспермия у тритона. А-проникновение спермиев в яйцо на стадии метафазы II деления созревания; Б-синхронные изменения семенных ядер, образование семенных звезд; В-женское ядро соединяется с одним из семенных ядер; Г - Е-синкарион вступает в митоз, сверхчисленные семенные ядра оттесняются в вегетативное полушарие и дегенерируют. Цифры над изображением яиц - время после проникновения спермиев при температуре 23 о (по Гинзбург).

При физиологической моноспермии имеются особые механизмы защиты яйца от полиспермии. Первый механизм связан с изменением мембранного потенциала. Установлено, что в яйцеклетке лягушки, через несколько секунд, после контакта со сперматозоидом заряд мембраны изменяется от -28 до 8 мв и остается положительным в течение 20 мин. Такие же изменения мембранного потенциала были обнаружены в яйцеклетках морского ежа. Оказалось, что положительный заряд мембраны препятствует полиспермии. Другой широко распространенный механизм защиты яйца от проникновения сверхчисленных сперматозоидов связан с образованием оболочки оплодотворения и перивителлиновой жидкости.

Поделиться: