Химические реакции. Условия протекания и прекращения химических реакций. Химические процессы и условия их протекания Что такое условие протекания реакции

Скорость химической реакции – это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).

Закон действующих масс : зависимость скорости реакции от концентрации реагирующих веществ. Чем выше концентрация, тем большее число молекул содержится в объеме. Следовательно, возрастает число соударений, что приводит к увеличению скорости процесса.

Кинетическое уравнение – зависимость скорости реакции от концентрации.

Твердые тела равны 0

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Общий порядок реакции - это сумма показателей степеней концентрации в кинетическом уравнении.

Константа скорости реакции - коэффициент пропорциональности в кинетическом уравнении.

Правило Вант-Гоффа: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два - четыре раза

Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

    Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

    Молекулы должны обладать необходимой энергией (энергией активации).

    Молекулы должны быть правильно ориентированы относительно друг друга.

Энергия активации - минимальное количество энергии, которое требуется сообщить системе, чтобы произошла реакция.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции от температуры

A - характеризует частоту столкновений реагирующих молекул

R - универсальная газовая постоянная.

Влияние катализаторов на скорость реакции.

Катализатор – это вещество, изменяющее скорость химической реакции, но само в реакции не расходуется и в конечные продукты не входит.

При этом изменение скорости реакции происходит за счет изменения энергии активации, причем катализатор с реагентами образует активированный комплекс.

Катализ - химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ (их называют катализаторами).

Гетерогенный катализ - реагент и катализатор находятся в разных фазах - газообразной и твердой.

Гомогенный катализе - реагенты (реактивы) и катализатор находятся в одной фазе - например, оба являются газами или оба растворены в каком-либо растворителе.

Условия химического равновесия

состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление.

Принцип Ле-Шателье: если на систему, находящуюся в равновесии оказано какое-либо внешнее воздействии, то равновесии сместится в сторону той реакции, которое это действие будет ослаблять.

Константа равновесия – это мера полноты протекания реакции, чем больше величина константы равновесия, тем выше степень превращение исходных веществ в продукты реакции.

К р =С пр \С исх

ΔG<0 К р >1 С пр > С исх

ΔG>0 К р <1 С пр <С исх

На протяжении всей жизни мы постоянно сталкиваемся с физическими и химическими явлениями. Природные физические явления для нас столь привычны, что мы уже давно не придаём им особого значения. Химические реакции постоянно протекают в нашем организме. Энергия, которая выделяется при химических реакциях, постоянно используется в быту, на производстве, при запуске космических кораблей. Многие материалы, из которых изготовлены окружающие нас вещи, не взяты в природе в готовом виде, а изготовлены с помощью химических реакций. В быту для нас не имеет особого смысла разбираться в том, что же произошло. Но при изучении физики и химии на достаточном уровне без этих знаний не обойтись. Как отличить физические явления от химических? Существуют ли какие-либо признаки, которые могут помочь это сделать?

При химических реакциях из одних веществ образуются новые, отличные от исходных. По исчезновению признаков первых и появлению признаков вторых, а также по выделению или поглощению энергии мы заключаем, что произошла химическая реакция.

Если прокалить медную пластинку, на её поверхности появляется чёрный налёт; при продувании углекислого газа через известковую воду выпадает белый осадок; когда горит древесина, появляются капли воды на холодных стенках сосуда, при горении магния получается порошок белого цвета.

Выходит, что признаками химической реакций являются изменение окраски, запаха, образование осадка, появление газа.

При рассмотрении химических реакций, необходимо обращать внимание не только на то, как они протекают, но и на условия, которые должны выполняться для начала и течения реакции.

Итак, какие же условия должны быть выполнены для того, чтобы началась химическая реакция?

Для этого прежде всего необходимы реагирующие вещества привести к соприкосновению (соединить, смешать их). Чем более измельчены вещества, чем больше поверхность их соприкосновения, тем быстрее и активнее протекает реакция между ними. Например, кусковой сахар трудно поджечь, но измельчённый и распылённый в воздухе он сгорает за считанные доли секунды, образуя своеобразный взрыв.

С помощью растворения мы можем раздробить вещество на мельчайшие частицы. Иногда предварительное растворение исходных веществ облегчает проведение химической реакции между веществами.

В некоторых случаях соприкосновение веществ, например, железа с влажным воздухом, достаточно, чтобы произошла реакция. Но чаще одного соприкосновения веществ для этого недостаточно: необходимо выполнение ещё каких-либо условий.

Так, медь не вступает в реакцию с кислородом воздуха при невысокой температуре около 20˚-25˚С. Чтобы вызвать реакцию соединения меди с кислородом, необходимо прибегнуть к нагреванию.

На возникновение химических реакций нагревание влияет по – разному. Для одних реакций требуется непрерывное нагревание. Прекращается нагревание – прекращается и химическая реакция. Например, для разложения сахара необходимо постоянное нагревание.

В других случаях нагревание требуется лишь для возникновения реакции, оно даёт толчок, а далее реакция протекает без нагревания. Например, такое нагревание мы наблюдаем при горении магния, древесины и других горючих веществ.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В главе 5.2 мы познакомились с основными принципами протекания химических реакций. Они и составляют теорию элементарных взаимодействий.

§ 5.3.1 Теория элементарных взаимодействий

Перечисленные ниже основные положения ТЭВ отвечают на вопрос:

Что необходимо для протекания химических реакций?

1. Химическая реакция инициируется активными частицами реагентов, отличными от насыщенных молекул: радикалами, ионами, координационно ненасыщенными соединениями. Реакционная способность исходных веществ определяется наличием в их составе этих активных частиц.

Химия выделяет три основных фактора, влияющих на химическую реакцию:

  • температура;
  • катализатор (если нужен);
  • природа реагирующих веществ.

Из них важнейшим является последний. Именно природа вещества определяет его способность образовывать те или иные активные частицы. А стимулы лишь помогают осуществиться этому процессу.

2. Активные частицы находятся в термодинамическом равновесии с исходными насыщенными молекулами .

3. Активные частицы взаимодействуют с исходными молекулами по цепному механизму.

4. Взаимодействие между активной частицей и молекулой реагента происходит в три стадии: ассоциации, электронной изомеризации и диссоциации.

На первой стадии протекания химической реакции - стадии ассоциации активная частица присоединяется к насыщенной молекуле другого реагента с помощью химических связей, которые слабее, чем ковалентные. Ассоциат может быть образован с помощью ван-дер-ваальсовой, водородной, донорно-акцепторной и динамической связи.

На второй стадии протекания химической реакции - стадии электронной изомеризации происходит важнейший процесс - преобразование сильной ковалентной связи в исходной молекуле реагента в более слабую: водородную, донорно-акцепторную, динамическую, а то и ван-дер-ваальсовую.

5. Третья стадия взаимодействия между активной частицей и молекулой реагента - диссоциация изомеризованного ассоциата с образованием конечного продукта реакции - является лимитирующей и самой медленной стадией всего процесса.

Великая «хитрость» химической природы веществ

Именно эта стадия определяет общие энергетические затраты на весь трехстадийный процесс протекания химической реакции. И здесь заключена великая «хитрость» химической природы веществ. Самый энергозатратный процесс - разрыв ковалентной связи в реагенте - произошел легко и изящно, практически не заметно во времени по сравнению с третьей, лимитирующей стадией реакции. В нашем примере так легко и непринужденно связь в молекуле водорода с энергией 430 кДж/моль преобразовалась в ван-дер-ваальсовую с энергией в 20 кДж/моль. И все энергозатраты реакции свелись к разрыву этой слабой ван-дер-ваальсовой связи. Вот почему энергетические затраты, необходимые для разрыва ковалентной связи химическим путем, значительно меньше затрат на термическое разрушение этой связи.

Таким образом, теория элементарных взаимодействий наделяет строгим физическим смыслом понятие «энергия активации». Это энергия, необходимая для разрыва соответствующей химической связи в ассоциате, образование которого предшествует получению конечного продукта химической реакции.

Мы еще раз подчеркиваем единство химической природы вещества. Оно может вступить в реакцию лишь в одном случае: при появлении активной частицы. А температура, катализатор и другие факторы, при всем их физическом различии, играют одинаковую роль: инициатора.

1. Укажите, к физическим или химическим относятся явления, изображенные на рисунках.

2. Установите соотвествие.

Примеры химических реакций:
I. взаимодействие мрамора с соляной кислотой;
II. взаимодействие железа с серой;
III. разложение пероксида водорода;
IV. взаимодействие углекислого газа с извесковой водой.

Условия протекания химических реакций:
а) соприкосновение веществ;
б) нагревание;
в) использование катализатора.

Ответ : I - а; II - а, б; III - в; IV - а.

3. Заполните схему 2.

4. "Кроссоврд - наоборот". Все слова в кроссворде уже вписаны. Дайте каждому из слов как можно более точное определение.

"Ключевое слово" - первая химическая реакция, с которой познакомился человек.

1. Одно из четырех агрегатных состояний вещества.
2. Образование твердого вещества в растворе в ходе химической реакции.
3. Положение двух или нескольких тел, предметов, веществ.
4. Переносное или передвижное устройство для тушения очагов пожара.
5. Процесс характеризуется повышением температуры.
6. Химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции.
7. Воздействие объектов друг на друга.

I. Признаки и условия протекания химических реакций

Вы уже знаете многие вещества, наблюдали их превращения и сопровождающие эти превращенияпризнаки.

Самым главным признаком химической реакции является образование новых веществ. Но об этом сожно судить и по некоторым внешним признакам протекания реакций.

Внешние признаки протекания химических реакций:

  • выпадение осадка
  • изменение цвета
  • выделение газа
  • появление запаха
  • поглощение и выделение энергии (тепла, электричества, света)

Очевидно, что для возникновения и течения химических реакций необходимы некоторые условия:

  • соприкосновение исходных веществ (реагентов)
  • нагревание до определенной температуры
  • применение веществ, ускоряющих химическую реакцию (катализаторов)

II. Тепловой эффект химической реакции

Д.И. Менделеев указывал: важнейшим признаком всех химических реакций является изменение энергии в процессе их протекания.

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Выделение или поглощение теплоты в процессе химических реакций обусловлено тем, что энергия затрачивается на процесс разрушения одних веществ (разрушение связей между атомами и молекулами) и выделяется при образовании других веществ (образование связей между атомами и молекулами).

Энергетические изменения проявляются либо в выделении, либо в поглощении теплоты.

Реакции, протекающие с выделением теплоты, называются экзотермическими (от греч. «экзо» - наружу).

Реакции протекающие с поглощением энергии называются эндотермическими (от латинского "эндо" - внутрь).

Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного МОЛЯ реагента или (реже) для моля продукта реакции. Количество теплоты, выделяющееся или поглощающееся при химической реакции, называется тепловым эффектом реакции (Q).

Экзотермическая реакция:

Исходные вещества → продукты реакций + Q кДж

Эндотермическая реакция:

Исходные вещества → продукты реакций - Q кДж

Тепловые эффекты химических реакций нужны для многих технических расчетов. Представьте себя на минуту конструктором мощной ракеты, способной выводить на орбиту космические корабли и другие полезные грузы.

Допустим, вам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

Область химии, занимающаяся изучением тепловых эффектов, химических реакций, называетсятермохимией.

Уравнения химических реакций, в которых указан тепловой эффект, называют термохимическими.

Поделиться: