Клетка основная единица нервной ткани. Нервная ткань. Строение, функции. Виды нейронов и нейроглии. Структура и функции нейронов

Нервная ткань занимает особое место в организме высокоразвитых животных. Через чувствительные нервные окончания организм получает сведения о внешнем мире. Возбуждение, вызванное такими агентами внешней среды, как звук, свет, температура, химические и прочие воздействия, передается по чувствительным нервным волокнам в определенные участки центральной нервной системы. Затем нервный импульс в силу определенной, очень сложной организации нервной ткани переходит на другие участки центральной нервной системы. Отсюда он по двигательным волокнам передается к мышцам или железе, которые и осуществляют целесообразную ответную реакцию на раздражение. Она выражается в том, что мышца сокращается, а железа выделяет секрет. Путь от органа чувств до центральной нервной системы и от нее до эффекторного органа (мышца, железа) называется рефлекторной дугой, а сам процесс - рефлексом. Рефлекс - это механизм, при помощи которого животное приспосабливается к меняющимся условиям внешней среды.

На протяжении длительного периода эволюционного развития животных ответная реакция благодаря совершенствованию нервной системы становилась разнообразнее, сложнее, и животные все более и более приспосабливались к различным, часто весьма изменчивым условиям внешней среды.

Рис. 67. Глиоциты спинного мозга (А) и глиальные макрофаги (Б):

I - длиннолучевые, или волокнистые, астроциты; 2 - коротколучевые, или протоплазматические, астроциты; 3 - клетки эпендимы; 4 - апикальные концы этих клеток, несущие мерцательные реснички, создающие ток цереброспинальной жидкости в желудочках мозга и спинномозговом канале; 5 - отростки клеток эпендимы, образующие остов нервной ткани; 6 - концевые пуговки отростков эпендимы, отграничивающие подобно мембране центральную нервную систему от окружающих тканей.

Особенно сложна и дифференцирована нервная система млекопитающих. У них каждый отдел нервной системы, даже самый небольшой ее участок, имеет свою, только ему свойственную структуру нервной ткани. Однако, несмотря на большое различие нервной ткани разных участков нервной системы, для всех разновидностей ее характерны некоторые общие черты строения. Эта общность заключается в том, что все разновидности нервной ткани построены из нейронов и клеток нейроглии. Нейроны - главная функциональная единица нервной ткани. Именно в них появляется и по ним распространяется нервный импульс. Однако свою деятельность нейрон может осуществлять при тесном контакте с нейроглией. Межклеточного вещества в нервной ткани очень мало и представлено оно межклеточной жидкостью. Глиальные волокна и пластинки относятся к структурным элементам клеток нейроглии, а не к промежуточному веществу ткани.

Нейроглия весьма многофункциональный компонент. Одной из важных функций нейроглии является механическая, так как она образует остов нервной ткани, на котором размещаются нейроны. Другая функция нейроглии- трофическая. Клетки нейроглии играют также защитную роль. Исследования (В. В. Португалов и др.) свидетельствуют, что нейроглия косвенно участвует в проведении нервного импульса по нейрону. Нейроглия, по-видимому, обладает также инкреторной функцией.

По происхождению нейроглию делят на глиоциты и глиальные макрофаги (рис. 67).

Глиоциты образуются из того же нервного зачатка, что и нейроны, то есть из нейроэктодермы. Среди глиоцитов различают астроциты, эпинди-моциты и олигодендроглиоциты. Основная клеточная форма из них - астроциты.

В центральной нервной системе опорный аппарат представлен мелкими клетками с многочисленными радиально расходящимися отростками. В специальной литературе различают два вида астроцитов: плазматические и волокнистые. Плазматические астроциты находятся преимущественно в сером веществе головного и спинного мозга. Клетка характеризуется наличием крупного, бедного хроматином ядра. От тела клетки отходят многочисленные короткие отростки. Цитоплазма богата митохондриями, что говорит об участии астроцитов в обменных процессах. Волокнистые астроциты располагаются в основном в белом веществе мозга. Эти клетки имеют доЖ) длинных, слабо ветвящихся отростков.

Эпиндимоциты выстилают полости желудков и каналов в головном и спинном мозге. Обращенные в просвет полостей и каналов концы клеток несут мерцательные реснички, обеспечивающие ток спинномозговой жидкости. От противоположных концов этих клеток отходят отростки, пронизывающие все вещество мозга. Эти отростки также играют опорную роль. Олигодендроглиоциты окружают тела невроцитов в центральной и периферической нервных системах, находятся в оболочках нервных волокон. В различных отделах нервной системы они имеют разную форму. От тел этих клеток отходит несколько коротких и слабо разветвленных отростков. Функциональное значение олигодендроглиоцитов очень разнообразно (трофическое, участие в регенерации и дегенерации волокон и т. д.)-

Рис. 68. Строение нейрона:

/ - тело клетки с ядром; 2 - дендриты; 3 - аксон; 4 - миели-новая оболочка; 5 - оболочка леммоцита;

6 - ядро леммоцита;

7 - концевые разветвления; 8 - боковая ветвь.

Глиальные макрофаги развиваются из клеток мезенхимы, которые при развитии нервной системы проникают в нее вместе с кровеносными сосудами. Глиальные макрофаги состоят из клеток довольно разнообразной формы, но для большинства этих клеток характерно наличие сильно разветвленных отростков. Однако встречаются клетки и округлой формы. Глиальные макрофаги играют трофическую роль и выполняют защитную фагоцитарную функцию.

Нейроны - это высокоспециализированные клетки, образующие звенья рефлекторной дуги. В нейроне совершаются основные нервные процессы: раздражение, которое возникает в результате воздействия на нервные окончания факторов внешней и внутренней среды; превращение раздражения в возбуждение и передача нервного импульса. Нейроны разных участков нервной системы имеют разные функцию, строение и размер.

По функции различают нейроны чувствительные, двигательные и передаточные. Чувствительные (афферентные) нейроны воспринимают раздражение и передают возникший в результате раздражения нервный импульс в спинной или головной мозг. Передаточные (ассоциативные) нейроны переводят возбуждение с чувствительных нейронов на двигательные. Двигательные (эфферентные) нейроны передают импульс от головного или спинного мозга к мускулатуре, железам и др.

Нейрон состоит из сравнительно компактного и массивного тела и отходящих от него тонких более или менее длинных отростков (рис. 68). Тело нервной клетки главным образом управляет ростом и обменными процессами, а отростки осуществляют передачу нервного импульса и вместе с телом клетки ответственны за происхождение импульса. Тело нервной клетки состоит главным образом из цитоплазмы. Ядро бедно хроматином и всегда содержит одно или два хорошо выраженных ядрышка. Из органелл в нервных клетках хорошо развит пластинчатый комплекс, имеется большое количество митохондрий с продольными гребнями. Специфичными для нервной клетки являются базофильное вещество ее и нейрофибриллы (рис. 69).

Рис. 69. Специальные органеллы нервной клетки:

/ - базофильное вещество в моторной клетке спинного мозга; / - ядро; 2 - ядрышко; 3 - глыбки базального вещества; Д - начало дендритов; Н - начало нейрона, // - нейрофибриллы в нервной клетке спинного мозга.

Базофильное, или тигроидноеу вещество состоит из белковых веществ, содержащих железо и фосфор. Оно богато рибонуклеиновой кислотой и гликогеном. В виде глыбок неправильной формы это вещество разбросано по всему телу клетки и придает ей пятнистый вид (I). В живой неокрашенной клетке этого вещества не видно. Электронная микроскопия показала, что базофильное вещество идентично зернистой цитоплазматической сети и состоит из сложной сети мембран, которые формируют трубочки или цистерны, лежащие параллельно друг другу и связанные в единое целое. На стенках мембран располагаются гранулы - рибосомы (диаметр 100-300 А), богатые РНК. С базофиль-ным веществом связаны важнейшие физиологические процессы, совершающиеся в клетке. Известно, например, что при утомлении нервной системы количество тигро-идного вещества резко уменьшается, а во время отдыха оно восстанавливается.

Нейрофибриллы на фиксированных препаратах имеют вид тонких нитей, расположенных в теле клетки довольно беспорядочно (II). Электронный микроскоп показал, что фибриллярные элементы нервной клетки, аксона и денд-ритов состоят из трубочек диаметром 200-300 А.оОбнаруживают также более тонкие нити - нейрофиламенты, толщина 100 А. При изготовлении препаратов они могут объединяться в пучки, видимые в световом микроскопе в виде нейрофибрилл. Функция их, вероятно, связана с трофическими процессами.

Отростки нервной клетки проводят возбуждение со скоростью около 100 м/с. В зависимости от количества отростков различают нейроны: униполярные - с одним отростком, биполярные - с двумя отростками, лож-ноуниполярные - развиваются из биполярных, но во взрослом состоянии имеют один отросток, слившийся из двух ранее самостоятельных отростков, кмультиполярные - с несколькими отростками (рис. 70). У млекопитающих чувствительные нейроны являются ложноуниполярными (за исключением клеток Догеля II типа), и их тела лежат либо в спинномозговых ганглиях, либо в чувствительных черепно-мозговых нервах. Передаточные и двигательные нейроны являются мультиполярными. Отростки одной нервной клетки не равнозначны. На основе функции различают два вида отростков: нейрит и дендриты.

Рис. 70, Типы нервных клеток:

А ~ Униполярная клетка; Б - биполярная

Клетка; В - мультиполярная клетка; 1 -

Дендриты; 2 - нейриты.

Нейритом пли аксоном называется отросток, по которому возбуждение передается от тела клетки, то есть цен-тробежно. Он является обязательной

Составной частью нервной клетки. От тела каждой клетки отходит только один нейрит, который по длине может варьировать от нескольких миллиметров до 1,5 м, а по толщине от 5 до 500 мкм (у кальмара), но у млекопитающих чаще диаметр колеблется около 0,025 нм (нанометр, миллимикрон). Разветвляется нейрит обычно сильно лишь на самом конце. На остальном протяжении от него отходят немногочисленные боковые веточки (коллатера-ли). Благодаря этому диаметр аксона уменьшается незначительно, что обеспечивает большую скорость нервного импульса. В аксоне находятся прото-нейрофибриллы, но в них никогда не встречается базальное вещество. Дендриты - отростки, которые в отличие от аксона воспринимают раздражение и передают возбуждение к телу клетки, то есть центростремительно. У очень многих нервных клеток эти отростки древовидно ветвятся, что и дало повод назвать их дендритами (dendron - дерево). В дендритах имеются не только протонейрофибриллы, но и базофильное вещество. От тела мультиполярных клеток отходит несколько дендритов, от тела биполярной - один, а униполярная клетка лишена дендритов. В этом случае раздражение воспринимается телом клетки.

Нервное волокно - отросток нервной клетки, окруженный оболочками (рис. 71,72). Цитоплазматический отросток нервной клетки, занимающий центр волокна, называется осевым цилиндром. Он может быть представлен либо дендритом, либо нейритом. Оболочка нервного волокна построена за счет леммоцита. От толщины осевого цилиндра и строения оболочек волокна зависит скорость передачи нервного импульса, которая колеблется от нескольких м/с до 90, 100 и может достигать 5000 м/с. В зависимости от строения оболочек различают нервные волокна безмиелиновые и миелино-вые. И в тех и в других волокнах оболочка, окружающая цитоплазматичес-кий отросток нервной клетки, состоит из леммоцитов, но морфологически отличающихся друг от друга. Безмиелиновые волокна представляют собой несколько осевых цилиндров, принадлежащих разным нервным клеткам, погруженных в массу леммоцитов. Эти клетки лежат друг над другом вдоль волокна. Осевые цилиндры могут переходить из одного волокна в другое,

Рис. 71. Строение безмиелинового Рис. 72. Строение миелинового нервного волокна:

Нервного волокна: 1 - цитоплазма; 2 -- ядро; 3 - оболочка А - схема; / - осевой цилиндр; 2 - миелиновая обо- леммоцита; 4 - мезаксон; 5-аксон; 6 - лочка; 3 - неврилемма, или оболочка леммоцита; 4 - аксон, переходящий из леммоцита одного ядро леммоцита; 5 -перехват Ранвье; Б - электрон-волокна в леммоцит другого; 7 - граница ная микрограмма части миелинового волокна, между двумя леммоцитами одного волокна.

Рис. 73. Схема развития миелинового волокна:

/ - леммоцит; 2- его ядро; 3 - его плазмалемма; 4- осевой цилиндр; 5 - мезаксон; стрелкой указано направление вращения осевого цилиндра; 5- будущая миелиновая оболочка нервного волокна;

7 - неврилемма, его же.

А иногда глубоко внедряться в леммоциты, увлекая за собой их плазмалемму. Благодаря этому образуются мезаксоны (рис. 71-4). По безмиелиновым волокнам нервный импульс проходит медленнее и может передаваться лежащим рядом с ними отросткам других нейритов, а благодаря переходу осевых цилиндров из одного волокна в другое передача возбуждения имеет нестрого направленный, а разлитой, диффузный характер. Безмиелиновые волокна находятся главным образом во внутренних органах, которые осуществляют свою функцию сравнительно медленно и диффузно.

Миелиновые волокна отличаются от безмиелиновых большой толщиной и усложненным строением оболочки (рис. 72). В процессе развития отросток нервной клетки., называемый в волокне осевым цилиндром, погружается в леммоцит (шванновскую клетку). В результате вначале он облекается одним слоем плазмалеммы леммоцита, состоящей, как и оболочки других клеток, из бимолекулярного слоя липидов, располагающихся между мономолекулярными слоями белков. Дальнейшее внедрение осевого цилиндра приводит к образованию мезаксона, аналогичного таковому безмиелинового волокна. Однако в случае развития миелинового волокна вследствие удлинения мезаксона и наслоения его вокруг осевого цилиндра (рис. 71) развивается многослойная оболочка, называемая миелиновой (рис. 73). Благодаря присутствию большого количества липидов она хорошо импрегнируется осмием, после чего ее легко можно увидеть в световой микроскоп. Миелиновая оболочка служит изолятором, благодаря которому нервное возбуждение не может переходить на соседнее волокно. По мере развития миелиновой оболочки цитоплазма леммоцитов оттесняется ею и образует очень тонкий поверхностный слой, называемый неврилеммой. В ней лежат ядра леммоцитов. Таким образом, и миелиновая оболочка и неврилемма являются производными леммоцитов.

Миелиновая оболочка нервных волокон, проходящих в белом веществе спинного и головного мозга, а также (по данным Н.В. Михайлова) в периферических нервах белых мышц у птиц, имеет вид сплошного цилиндра. В нервных волокнах, составляющих большинство периферических нервов, она прерывается, то есть состоит из отдельных муфт, между которыми имеются промежутки - перехваты Ранвье. В последнем леммоциты соединяются друг с другом. Осевой цилиндр здесь покрыт лишь неврилеммой. Это облегчает поступление питательных веществ в отросток нервной клетки. Биофизики полагают, что перехваты Ранвье способствуют более ускоренному проведению нервного импульса по отростку, являясь местом регенерации электрического сигнала. Миелиновая оболочка, заключенная между перехватами Ранвье (сегмент), пересекается воронкообразными щелями - миелиновыми насечками, идущими в косом направлении от наружной поверхности оболочки к внутренней. Число насечек в сегменте различное.

В миелиновых волокнах возбуждение проводится быстрее и не переходит на соседние волокна.

Нерв. Нервные волокна в головном и спинном мозге составляют главную массу белого вещества. Выходя из мозга, эти волокна идут не изолированно, а объединяются друг с другом при помощи соединительной ткани. Такой комплекс нервных волокон называют нервом (рис. 74). В состав нерва входит от нескольких тысяч до нескольких миллионов волокон. Они образуют один или несколько пучков - стволиков. В пучки волокна объединяются при помощи соединительной ткани, назы-

Рис. 74. Поперечный разрез нерва лошади:

А - участок его под большим увеличением; / - миелино-вая оболочка нервного волокна; 2 - осевые цилиндры его; 3 - безмиелиновое нервное волокно; 4 - соединительная ткань между нервными волокнами (эндоневрий); 5 - соединительная ткань вокруг пучка нервных волокон (пе-риневрий); 6 - соедшштельная ткань, связывающая несколько нервных пучков (эпиневрий); 7 - сосуды.

Ваемоиэндоневрием. Снаружи каждый пучок окру жен периневрием. Последний иногда состоит из нескольких слоев плоских эпителиоподобных нейроглиального происхождения клеток и из соединительной ткани, а в других случаях построен только из соединительной ткани. Периневрий играет защитную роль. Несколько таких пучков объединяются друг с другом при помощи более плотной соединительной ткани, называемой эпиневрием. Последний покрывает весь нерв снаружи и служит для укрепления нерва в определенном положении. По соединительной ткани в нерв вступают кровеносные и лимфатические сосуды.

Нервные волокна, составляющие нерв, различны по функции и по строению. Если в нерве имеются отростки только двигательных клеток, - это нерв двигательный: если имеются отростки чувствительных клеток - чувствительный, а если и те и другие - смешанный. Нерв образует и миелиновые и безмиелиновые волокна. Количество их в разных нервах различно. Так, по данным Н.В. Михайлова, в нервах конечностей больше миелиновых волокон, а в межреберных безмиелиновых.

Синапсы - место соединения отростков двух нервных клеток между собой (рис. 75). Нейроны либо прикасаются друг с другом своими отростками, либо отросток одного нейрона соприкасается с телом клетки другого нейрона. Соприкасающиеся концы нервных отростков могут иметь форму вздутий, петелек или оплетать, подобно лианам, другой нейрон и его отростки. Электронно-микроскопические исследования показали, что в синапсе следует различать: два полюса, синаптическую щель между ними и замыкающее утолщение.

Первый полюс представлен концом аксона первой клетки, причем плаз-малемма его образует пресинаптическую мембрану. Около нее в аксоне скапливается много митохондрий, иногда присутствуют кольцеобразно расположенные пучки нитей (нейрофиламенты) и всегда находится большое количество синаптических пузырьков. Последние, по-видимому, содержат химические вещества - медиаторы, выделяющиеся в синаптическую щель, и оказывают действие на второй полюс синапса.

Второй полюс образуется либо телом, либо дендритом, либо шиловидным выростом его, либо даже аксоном второго нейрона. Полагают, что в последнем случае происходит торможение, а не возбуждение второго нейрона. Плазмалемма второй нервной клетки формирует второй полюс синапса-постсинаптическую мембрану, отличающуюся большей толщиной. Предполагают, что в ней совершается разрушение медиатора, который возник во время одиночного импульса. В местах соприкосновения пре- и постсинапти-ческих мембран на них имеются утолщения, которые, по-видимому, укрепляют синаптическую связь. Описаны синапсы без синаптической щели. В этом случае нервный импульс, вероятно, передается без участия медиаторов.

Через синапсы возбуждение может проходить только в одном направлении. Благодаря синапсам нейроны, соединяясь друг с другом, образуют рефлекторную дугу.

Нервные окончания являются окончаниями нервных волокон, которые благодаря особой структуре могут либо воспринимать раздражение, либо вызывать сокращение мускула или выделение секрета в железе. Окончания или, вернее, начала чувствительных отростков клеток в органах и тканях, воспринимающих раздражения, называют чувствительными нервными окончаниями или рецепторами. Окончания двигательных отростков нейронов, разветвляющиеся в мышцах или железах, называют двигательными нервными окончаниями или эффекторами. Рецепторы делятся на экстероре-цепторы, воспринимающие раздражение из внешней среды, проприорецепторы, несущие возбуждение от органов движения, и интерорецепторы, воспринимающие раздражение от внутренних органов. Рецепторы обладают повышенной чувствительностью к определенным видам раздражений. Соответственно этому имеются механррецепторы, хеморецепторы и т. д. По строению рецепторы бывают простыми, или свободными, и инкапсулированными.

Рис. 75. Нервные окончания на поверхности клетки спинного мозга (А) и схема строения синапса (Б):

1 - первый полюс синапса (утолщенный конец аксона); 2 -второй полюс синапса (или дендрит второй клетки, или ее тело); 3 - синаптическая щель; 4 - утолщение соприкасающихся мембран, придающее прочность синаптическому соединению; 5 - синаптические пузырьки; 6 - митохондрии.

Свободные нервные окончания (рис. 76). Проникнув в ткань, нервное волокно чувствительного нерва освобождается от своих оболочек, и осевой цилиндр, многократно разветвляясь, свободно оканчивается в ткани отдельными веточками, или эти веточки, переплетаясь, образуют сети и клубочки. В эпителии «пятачка» свиньи чувствительные веточки заканчиваются дискоидальными расширениями, на которых, как на блюдечках, лежат особые чувствительные клет-^ ки (меркелевские).

Инкапсулированные нервные окончания очень разнообразны, но в принципе построены одинаково. В таких окончаниях чувствительное волокно освобождается от оболочек, и голый осевой цилиндр распадается на ряд

Рис. 76. Типы нервных окончаний:

/ - чувствительные вервные окончания - неинкапсулированные; А - в эпителии роговицы; Б - в эпителии «спятачка» свиньи; В - в перикарде лошади: инкапсулированные; Г - Фатер-Починиево тельце; Д - тельце Майснера; Е - тельце из соска овцы; // - двигательные нервные окончания; Ж - в поперечнополосатом волокне; 3 - в гладкой мышечной клетке; / - эпителий; 2 - соединительная ткань; 3 - нервные окончания; 4 - меркелевская клетка; 5 - дискоидальное концевое расширение нервного окончания; 6 - нервное волокно; 7 - разветвление осевого цилиндра; 8 - капсула; 9 - ядро леммоцита; 10 - мышечное волокно.

Веточек.. Они погружаются во внутреннюю колбу, которая состоит из видоизмененных леммоцитов. Внутренняя колба окружена наружной колбой, состоящей из соединительной ткани.

В поперечнополосатой мышечной ткани чувствительные волокна оплетают сверху мышечные волокна, не проникая внутрь их, и образуют подобие веретена. Сверху веретено покрыто соединительнотканной капсулой.

Двигательные нервные окончания, или эффекторы, в гладкой мышечной ткани и железах обычно построены по типу свободных нервных окончаний. Хорошо изучены моторные окончания в поперечнополосатых мышцах. В месте проникновения двигательного волокна сарколемма мышечного волокна прогибается и одевает голый осевой цилиндр, распадающийся в этом месте на несколько веточек с утолщениями на концах.

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

1. Общая морфофункциональная характеристика нервной ткани.

2. Эмбриональный гистогенез. Дифференцировка нейробластов и глиобластов. Понятие о регенерации структурных компонентов нервной ткани.

3. Нейроциты (нейроны): источники развития, классификация, строение, регенерация.

4. Нейроглия. Общая характеристика. Источники развития глиоцитов. Классификация. Макроглия (олигодендроглия, астроглия и эпендимная глия). Микроглия.

5. Нервные волокна: общая характеристика, классификация, строение и функции безмиелиновых и миелиновых нервных волокон, дегенерация и регенерация нервных волокон.

6. Синапсы: классификации, строение химического синапса, строение и механизмы передачи возбуждения.

7. Рефлекторные дуги, их чувствительные, двигательные и ассоциативные звенья.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

НЕРВНАЯ ТКАНЬ

Нервная ткань выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.

Основные структурные элементы нервной ткани – клетки и нейроглия .

Нейроны

Нейроны состоят из тела (перикариона ) и отростков, среди которых выделяют дендриты и аксон (нейрит). Дендритов может быть множество, аксон всегда один.

Нейрон как любая клетка состоит из 3 компонентов: ядра, цитоплазмы и цитолеммы. Основной объём клетки приходится на отростки.

Ядро занимает центральное положение в перикарионе. В ядре хорошо развито одно или несколько ядрышек.

Плазмолемма принимает участие в рецепции, генерации и проведении нервного импульса.

Цитоплазма нейрона имеет различное строение в перикарионе и в отростках.

В цитоплазме перикариона находятся хорошо развитые органеллы: ЭПС, комплекс Гольджи, митохондрии, лизосомы. Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы .

Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т.д.) в виде зернистости – это скопления цистерн грЭПС. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Процесс разрушения или распада глыбок базофильного вещества называется тигролизом и наблюдается при реактивных изменениях нейронов (например, при их повреждении) или при их дегенерации.

Нейрофибриллы – это цитоскелет, состоящий из нейрофиламентов и нейротубул, формирующих каркас нервной клетки. Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками. Основной функцией этих элементов цитоскелета является опорная – для обеспечения стабильной формы нейрона. Подобную же роль играют тонкие микрофиламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

Нейротубулы по основным принципам своего строения фактически не отличаются от микротрубочек. Они, как и все микротрубочки имеют поперечный диаметр около 24 нм, кольца замыкают 13 молекул глобулярного белка тубулина. В нервной ткани микротрубочки выполняют очень важную, если не сказать уникальную роль. Как и всюду они несут каркасную (опорную) функцию, обеспечивают процессы циклоза. Микротрубки полярны. Именно полярность микротрубки, в которой имеется отрицательно и положительно заряженные концы, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Их подробное описание приведем ниже.

Кроме этого, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. У некоторых нейронов в норме обнаруживаются пигментные включения (например, с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое пятно).

Нейроны в энергетическом отношении крайне зависимы от аэробного фосфорилирования и во взрослом состоянии фактически не способы к анаэробному гликолизу. В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока нервные клетки практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. При мгновенной смерти, при комнатной температуре, и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком клинической смерти, когда возможно оживление организма. Необратимые изменения в нервной ткани приводят к переходу от клинической смерти к биологической.

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Дендриты – короткие отростки, нередко сильно ветвятся. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

Аксон (нейрит) чаще всего длинный, слабо ветвится или не ветвится. В нем отсутствует грЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в ЦНС, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика, где происходит суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

Аксоток (аксоплазматический транспорт веществ). Нервные волокна имеют своеобразный структурный аппарат – микротрубочки, по которым перемещаются вещества от тела клетки на периферию (антероградный аксоток ) и от периферии к центру (ретроградный аксоток ).

Различают быстрый (со скоростью 100-1000 мм/сут.) и медленный (со скоростью 1-10 мм/сут.) аксоток. Быстрый аксоток – одинаков для различных волокон; требует значительной концентрации АТФ; происходит с участием транспортных пузырьков. Он осуществляет транспорт медиаторов и модуляторов. Медленный аксоток – за счет него от центра к периферии распространяются биологически активные вещества, а также компоненты мембран клеток и белков.

Нервный импульс передаётся по мембране нейрона в определённой последовательности: дендрит – перикарион – аксон.

Классификация нейронов

1. По морфологии (по количеству отростков) выделяют:

- мультиполярные нейроны (г) — с множеством отростков (их большинство у человека),

- униполярные нейроны (а) — с одним аксоном,

- биполярные нейроны (б) — с одним аксоном и одним дендритом (сетчатка глаза, спиральный ганглий).

- ложно- (псевдо-) униполярные нейроны (в) – дендрит и аксон отходят от нейрона в виде одного отростка, а затем разделяются (в спинномозговом ганглии). Это вариант биполярных нейронов.

2. По функции (по расположению в рефлекторной дуге) выделяют:

- афферентные (чувствительные ) нейроны (стрелка слева) – воспринимают информацию и передают ее в нервные центры. Типичными чувствительными являются ложноуниполярные и биполярные нейроны спинномозговых и черепно-мозговых узлов;

- ассоциативные (вставочные ) нейроны осуществляют взаимодействие между нейронами, их большинство в ЦНС;

- эфферентные (двигательные ) нейроны (стрелка справа) генерируют нервный импульс и передают возбуждение другим нейронам или клеткам других видов тканей: мышечным, секреторным клеткам.

Синапсы

Синапсы – это специфические контакты нейронов, обеспечивающие передачу возбуждения от одной нервной клетки к другой. В зависимости от способов передачи возбуждения выделяют химические и электрические синапсы.

Эволюционно более древними и примитивными являются электрические синаптические контакты . Они по строению близки к щелевидным контактам (нексусам). Считается, что обмен происходит в обе стороны, но имеются случаи, когда возбуждение передаются в одном направлении. Такие контакты часто встречаются у низших беспозвоночных и хордовых. У млекопитающих электрические контакты имеют большое значение в процессе межнейронных взаимодействий в эмбриональном периоде развития. Подобный вид контактов у взрослых млекопитающих имеет место в ограниченных участках, например их можно видеть в мезэнцефалическом ядре тройничного нерва.

Химические синапсы . Химические синапсы для передачи возбуждения от одной нервной клетки к другой используют специальные вещества – медиаторы , от чего и получили свое название. Кроме медиаторов ими используются и модуляторы . Модуляторы это специальные химические вещества, которые сами возбуждения не вызывают, но могут либо усиливать, либо ослаблять чувствительность к медиаторам (то есть модулировать пороговую чувствительность клетки к возбуждению).

Химический синапс обеспечивает однонаправленную передачу возбуждения. Строение химического синапса:

1) Пресинаптическая зона – пресинаптическое расширение, наиболее часто представляющее собой терминаль аксона, в котором содержатся синаптические пузырьки, элементы цитоскелета (нейротубулы и нейрофиламенты), митохондрии;

2) Синаптическая щель , которая принимает медиаторы из пресинаптической зоны;

3) Постсинаптическая зона – это электронноплотное вещество с рецепторами к медиатору на мембране другого нейрона.

ФИЛЬМ СИНАПСЫ

Классификация синапсов :

1. В зависимости от того, какие структуры двух нейронов взаимодействуют в синапсе, можно выделить:

Аксо-дендритические (пресинаптическая структура аксон, постсинаптическая — дендрит);

Аксо-аксональные;

Аксо-соматические.

2. По функции выделяют:

- возбуждающие синапсы, которые приводят к деполяризации постсинаптической мембраны и активации нервной клетки;

- тормозные синапсы , которые приводят к гиперполяризации мембраны, что снижает пороговую чувствительность нейрона к внешним влияниям.

3. По основному медиатору, содержащемуся в синаптических пузырьках, синапсы делятся на группы:

  1. Холинергические (ацетилхолинергические): возбуждающие и тормозные;
  2. Адренергические (моноаминергические, норадренергические, дофаминергические): в основном, возбуждающие, но есть и тормозные;
  3. Серотонинергические (иногда приписываются к предыдущей группе): возбуждающие;
  4. ГАМК-ергические (медиатор гаммааминомаслянная кислота): тормозные;
  5. Пептидергические (медиаторы – большая группа вешеств, в основном: вазоинтерстициальный полипептид, вазопрессин, вещество Р (медиатор боли), нейропептид Y, окситоцин, бета-эндорфин и энкефалины (противоболевые), динорфин и т.д.).

Синаптические пузырьки отделены от гиалоплазмы одной мембраной. Холинсодержащие пузырьки электронносветлые, диаметром 40-60 мкм. Адренсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 50-80 мкм. Глицинсодержащие и ГАМК-содержащие – имеют овальную форму. Пептидсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 90-120 мкм.

Механизм передачи возбуждения в химическом синапсе: импульс, приходящий по афферентному волокну, вызывает возбуждение в пресинаптической зоне и приводит к выделению медиатора через пресинаптическую мембрану. Медиатор поступает в синаптическую щель. На постсинаптической мембране имеются рецепторы к нейромедиатору (холинорецепторы для медиатора ацетилхолина; адренорецепторы для норадреналина). В последующем связь медиаторов с рецепторами разрывается. Медиатор либо метаболизируется, либо подвергается обратному всасыванию пресинаптическими мембранами, либо захватывается мембранами астроцитов с последующей передачей медиатора к нервным клеткам.

Регенерация нейронов. Для нейронов характерна только внутриклеточная регенерация. Они являются стабильной популяцией клеток и в обычных условиях не делятся. Но имеются исключения. Так, доказана способность к делению у нервных клеток в эпителии обонятельного анализатора, в некоторых ганглиях (скоплениях нейронов вегетативной нервной системы) животных.

Нейроглия

Нейроглия — группа клеток нервной ткани, находящиеся между нейронами, различают микроглию и макроглию .

Макроглия

Макроглия ЦНС подразделяется на следующие клетки: астроциты (волокнистые и протоплазматические), олигодендроциты и эпендимоциты (в том числе и танициты).

Макроглия периферической нервной системы : сателлитоциты и леммоциты (шванновские клетки).

Функции макроглии: защитная, трофическая, секреторная.

Астроциты – звездчатые клетки, многочисленные отростки которых ветвятся и окружают другие структуры мозга. Астроциты есть только в ЦНС и анализаторах – производных нервной трубки.

Виды астроцитов: волокнистые и протоплазматические астроциты.

Терминали отростков обоих типов клеток имеют пуговичные расширения (ножки астроцитов), большинство из которых заканчивается в периваскулярном пространстве, окружая капилляры и образуя периваскулярные глиальные мембраны.

Волокнистые астроциты имеют многочисленные, длинные, тонкие, слабо или совсем не ветвящиеся отростки. В основном присутствуют в белом веществе мозга.

Протоплазматические астроциты отличаются короткими, толстыми и сильно ветвящимися отростками. Имеются преимущественно в сером веществе мозга. Астроциты располагаются между телами нейронов, немиелинизированной и миелинизированной частями нервных отростков, синапсами, кровеносными сосудами, подэпендимными пространствами, изолируя и в то же время структурно связывая их.

Специфическим маркером астроцитов является глиальный фибриллярный кислый белок, из которого образуются промежуточные филаменты.

Астроциты имеют относительно крупные светлые ядра, со слабо развитым ядрышковым аппаратом. Цитоплазма слабо оксифильная, в ней слабо развита аЭПС и грЭПС, комплекс Гольджи. Митохондрий мало, они небольших размеров. Цитоскелет развит умеренно в протоплазматических и хорошо – в волокнистых астроцитах. Между клетками значительное число щелевидных и десмосомоподобных контактов.

В постнатальный период жизни человека астроциты способны к миграции, особенно в зоны повреждения и способны к пролиферации (из них образуются доброкачественные опухоли астроцитомы).

Основные функции астроцитов : участие в гематоэнцефалическом и ликворогематическом барьерах (своими отростками покрывают капилляры, поверхности мозга и участвуют в транспорте веществ от сосудов к нейронам и наоборот), в связи с этим выполняют защитную, трофическую, регуляторную функции; фагоцитоз погибших нейронов, секреция биологически активных веществ: ФРФ, ангиогенные факторы, ЭФР, интерлейкин–I, простагландины.

Олигодендроциты клетки с небольшим числом отростков, способные к образованию миелиновых оболочек вокруг тел и отростков нейронов. Олигодендроциты находятся в сером и белом веществе ЦНС, в периферической нервной системе располагаются разновидности олигодендроцитов – леммоциты (шванновские клетки). Олигодендроциты и их разновидности характеризуются способностью образовывать дупликатуру мембраны – мезаксон , который окружает отросток нейрона, образуя миелиновую или безмиелиновую оболочку.

Ядра олигодендроцитов мелкие, округлые, темноокрашенные, отростки тонкие, не ветвятся или слабо ветвятся. На электроннооптическом уровне в цитополазме хорошо развиты органеллы, особенно синтетический аппарат, слабо развит цитоскелет.

Часть олигодендроцитов концентрируется в непосредственной близости к телам нервных клеток (сателлитные, или мантийные олигодендроциты ). Терминальная зона каждого отростка участвует в формировании сегмента нервного волокна, то есть каждый олигодендроцит обеспечивает окружение сразу нескольких нервных волокон.

Леммоциты (шванновские клетки ) периферической нервной системы характеризуются удлиненными, темноокрашенными ядрами, слабо развитыми митохондриями и синтетическим аппаратом (гранулярная, гладкая ЭПС, пластинчатый комплекс). Леммоциты окружают отростки нейронов в периферической нервной системе, образуя миелиновую или безмиелиновую оболочки. В области формирования корешков спинномозговых и черепно-мозговых нервов леммоциты формируют скопления (глиальные пробки), предотвращая проникновение отростков ассоциативных нейронов ЦНС за ее пределы.

В периферической нервной системе, помимо леммоцитов, имеются другие разновидности олигодендроцитов: сателлитные (мантийные) глиоциты в периферических нервных узлах вокруг тел нейронов, глиоциты нервных окончаний , конкретные морфологические особенности которых рассматриваются при изучении нервных окончаний и анатомии нервных узлов.

Основные функции олигодендроцитов и их разновидностей : образуя миелиновую или безмиелиновую оболочки вокруг нейронов, обеспечивают изолирующей, трофической, опорной, защитной функциями; участвуют в проведении нервного импульса, в регенерации поврежденных нервных клеток, фагоцитозе остатков осевых цилиндров и миелина при нарушении структуры аксона дистальнее места повреждения.

Эпендимоциты , или эпендимная глия – клетки низкопризматической формы, образующие непрерывный пласт, покрывающий полости мозга. Эпендимоциты тесно прилежат друг к другу, формируя плотные, щелевидные и десмосомальные контакты. Апикальная поверхность содержит реснички, которые у большинства клеток затем замещаются микроворсинками. Базальная поверхность имеет базальные впячивания (инвагинации), а также длинные тонкие отростки (от одного до нескольких), которые проникают до периваскулярных пространств микрососудов мозга.

В цитоплазме эпендимоцитов обнаруживаются митохондрии, умеренно развитый синтетический аппарат, хорошо представлен цитоскелет, имеется значительное количество трофических и секреторных включений.

Вариантом эпендимной глии являются танициты . Они выстилают сосудистые сплетения желудочков головного мозга, субкомиссуральный орган задней комиссуры. Активно участвуют в образовании ликвора (спинномозговой жидкости). Характеризуются тем, что базальная часть содержит тонкие длинные отростки.

Основные функции эпендимоцитов : секреторная (синтез ликвора), защитная (обеспечение гемато-ликворного барьера ), опорная, регуляторная (предшественники таницитов направляют миграцию нейробластов в нервной трубке в эмбриональном периоде развития).

Микроглия

Микроглиоциты, или нейральные макрофаги клетки небольших размеров мезенхимного происхождения (производные моноцитов), диффузно распределенные в ЦНС, с многочисленными сильно ветвящимися отростками, способны к миграции. Микроглиоциты – специализированные макрофаги нервной системы. Их ядра характеризуются преобладанием гетерохроматина. В цитоплазме обнаруживается много лизосом, гранул липофусцина; синтетический аппарат развит умеренно.

Функции микроглии: защитная (в том числе иммунная).

Нервные волокна

Нервное волокно состоит из отростка нейрона – осевого цилиндра (дендрита или аксона) и оболочки олигодендроцита или его разновидностей .

Виды нервных волокон:

1) В зависимости от того, как произошло образование оболочки, нервные волокна подразделяются на миелиновые и безмиелиновые.

В периферической нервной системе нервные волокна окружают леммоциты. Один леммоцит связан с одним нервным волокном. В центральной нервной системе отростки нейронов окружают олигодендроциты. Каждый олигодендроцит участвует в формировании нескольких нервных волокон.

Миелинизация волокон осуществляется путем удлинения и «наворачивания» мезаксона вокруг отростка нервной клетки (в периферической нервной системе) или удлинения и вращения отростка олигодендроцита вокруг осевого цилиндра в ЦНС.

Миелиновые (мякотные) волокна в периферической нервной системе имеют в своём составе один отросток нейрона, окружённый удлинённой дупликутурой леммоцита (мезаксон). В миелиновом волокне мезаксон многократно оборачивается вокруг осевого цилиндра, формируя многократные витки мембраны – миелин. Зоны разрыхления миелина (проникновения цитоплазмы леммоцита) называются насечками (Шмидта-Лантермана). Каждый леммоцит образует сегмент волокна, участки границ соседних клеток немиелинизированы и называются перехватами Ранвье , таким образом, по длине волокна миелиновая оболочка имеет прерывистый ход. Миелиновая оболочка является биологическим изолятором. Распространение деполяризации в миелиновом волокне осуществляется скачками от перехвата к перехвату.

Безмиелиновые (безмякотные) волокна в периферической нервной системе состоят из одного или нескольких осевых цилиндров, погружённых в цитолемму окружающего их леммоцита. Мезаксон (дупликатура мембраны) короткий. Передача возбуждения в безмиелиновых волокнах происходит по поверхности нерва через изменение поверхностного заряда.

2) В зависимости от скорости проведения нервного импульса различают следующие типы нервных волокон:

  1. Тип А имеет подгруппы:

- А a — обладают наибольшей скоростью проведения возбуждения — 70-120 м/с (соматические двигательные нервные волокна);

- А b — скорость проведения составляет 40-70 м/с. Это соматические афферентные нервы и некоторые эфферентные соматические нервы;

- А g — скорость проведения составляет 15-40 м/с — афферентные и эфферентные симпатические и парасимпатические нервы;

- А d (дельта) — скорость проведения 5-18 м/с. По этой группе афферентных соматических нервов проводятся первичная (быстрая) боль.

  1. Тип В – скорость проведения от 3 до 14 м/с – преганглионарные симпатические волокна, некоторые парасимпатические волокна, то есть это вегетативные нервы.
  2. Тип С – скорость проведения 0,5-3 м/с: постганглионарные вегетативные волокна (безмиелиновые). Проводят болевые импульсы медленной вторичной боли (от рецепторов пульпы зуба).

Нейрогенез. На 15-17 сутки внутриутробного развития человека под индуцирующим влиянием хорды из первичной эктодермы формируется нервная пластинка (скопление продольно лежащего клеточного материала). С 17 по 21 сутки пластинка инвагинирует и превращается сначала в нервный желобок , а затем в трубку . К 25 суткам эмбриогенеза происходит отщепление нервной трубки от эктодермы и замыкание переднего и заднего отверстий (нейропоров). По бокам от нервного желобка располагаются структуры нервного гребня .

На ранних сроках развития нервная трубка сформирована медулобластами – стволовыми клетками нервной ткани ЦНС. Из нервного гребня образуется ганглиозная пластинка состоящая из ганглиобластов – стволовых клеток нейронов и нейроглии периферической нервной системы. Медулобласты и ганглиобласты интенсивно иммигрируют, делятся и затем дифференцируются.

В ранние сроки внутриутробного развития нервная трубка представляет собой пласт отростчатых клеток, лежащих в виде одного слоя, но в несколько рядов. Изнутри и снаружи они ограничены пограничными мембранами. На внутренней поверхности (прилежащей к полости нервной трубки) медулобласты делятся.

В последующем нервная трубка формирует несколько слоев . Среди них можно выделить:

- Внутренняя пограничная мембрана : отделяет полость нервной трубки от клеток;

- Эпендимный слой (вентрикулярный в области мозговых пузырей) представлен бластными клетками-предшественниками макроглии;

- Субвентрикулярная зона (только в передних мозговых пузырях), где происходит пролиферация нейробластов;

- Мантийный (плащевой) слой , содержащий мигрирующие и дифференцирующиеся нейробласты и глиобласты;

- Маргинальный слой (краевая вуаль) сформирован отростками глиобластов и нейробластов. В ней можно видеть тела отдельных клеток.

- Наружная пограничная мембрана .

Диффероны нервной ткани центральной нервной системы

  1. Дифферон нейрона: медулобласт – нейробласт – молодой нейрон – зрелый нейрон.
    1. Дифферон астроцита: медулобласт – спонгиобласт – астробласт – протоплазматический или волокнистый астроцит.
    2. Диферрон олигодендроцита: медулобласт — спонгиобласт – олигодендробласт – олигодендроцит.
    3. Дифферон эпендимной глии: медулобаст – эпендимобласт – эпендимоцит или таницит.
    4. Дифферон микроглии: стволовая клетка крови – полустволовая клетка крови (КОЕ ГЭММ) – КОЕ ГМ – КОЕ М – монобласт – промоноцит – моноцит – микроглиоцит покоя – активированный микроглиоцит.

Диффероны нервной ткани в периферической нервной системе

1. Дифферон нейрона: ганглиобласт – нейробласт – молодой нейрон – зрелый нейрон.

2.Дифферон леммоцита: ганглиобласт – глиобласт – леммоцит (шванновская клетка).

Механизмы нейрогенеза. В процессе внутриутробного развития нейробласты мигрируют в области анатомических закладок нервных центров. При этом они прекращают делиться. В ЦНС миграция нейробластов контролируется адгезивными межклеточными взаимодействиями (с помощью кадгеринов и интегринов радиальной глии), сигнальными молекулами межклеточного вещества (в том числе фибронектинами и ламининами). После того как нейробласты достигают области своей постоянной локализации, они начинают дифференцироваться и формировать отростки. Направление роста отростков также контролируется упомянутыми адгезивными молекулами (кадгерины, интегрины, сигнальные молекулы межклеточного вещества).

Во внутриутробном развитии и после рождения происходит конкурентное взаимодействие между аналогичными нейронами нервных центров. При этом нервные клетки, не успевшие занять соответствующую зону, либо сформировать контакты, подвергаются апоптозу. В раннем развитии погибает от трети до половины нервных клеток.

В последующем развитии вокруг нервных клеток формируется глиальное окружение и происходит миелинизация нервных волокон. Нервные клетки до полового созревания продолжают формировать отростки и синаптические контакты. Максимального развития нервная ткань достигает к 25-30 годам.

С возрастом наблюдается гибель части нервных клеток и компенсаторная гипертрофия других. В нейронах может накапливаться липофусцин. Области с погибшими телами нервных клеток замещаются глиальными рубцам, образованными скоплением гипертрофированных астроцитов.

Дендриты сильно ветвятся, образуя дендритное дерево, и обычно короче аксона. От дендритов возбуждение направляется к телу нервной клетки. Они формируют постсинаптические структуры, воспринимающие возбуждение. Дендритов много, но может быть один. Аксон присутствует всегда, по одному на каждую нервную клетку. Он не ветвится или слабо ветвится в терминальных областях и заканчивается синаптическим бутоном, передающим возбуждение на другие клетки (пресинаптическая зона). Нейроны передают возбуждение с помощью специализированных контактов (синапсов). Вещество, обеспечивающее передачу возбуждения, называется медиатором . В каждом нейроне обычно обнаруживается один основной медиатор.

Регенерация нервных волокон в периферической нервной системе

После перерезки нервного волокна проксимальная часть аксона подвергается восходящей дегенерации, миелиновая оболочка в области повреждения распадается, перикарион нейрона набухает, ядро смещается к периферии, хроматофильная субстанция распадается. Дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами и глией. Леммоциты сохраняются и митотически делятся, формируя тяжи – ленты Бюнгнера. Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки, растущие вдоль лент Бюнгнера. А результате регенерации нервного волокна восстанавливается связь с органом-мишенью. При возникновении преграды на пути регенерирующего аксона (например, соединительнотканного рубца), восстановления иннервации не происходит.

С дополнениями из учебно-методического пособия «Общая гистология» (составители: Шумихина Г.В., Васильев Ю.Г., Соловьёв А.А., Кузнецова В.М., Соболевский С.А., Игонина С.В., Титова И.В., Глушкова Т.Г.)

Главный компонент мозга человека или другого млекопитающего – нейрон (другое название – неврон). Именно эти клетки образуют нервную ткань. Наличие невронов помогает приспособиться к условиям окружающей среды, чувствовать, мыслить. С их помощью передается сигнал в нужный участок тела. Для этой цели используются нейромедиаторы. Зная строение нейрона, его особенности, можно понять суть многих заболеваний и процессов в тканях мозга.

В рефлекторных дугах именно нейроны отвечают за рефлексы, регуляцию функций организма. Трудно найти в организме другой вид клеток, который отличался бы таким многообразием форм, размеров, функций, строения, реактивности. Мы выясним каждое различие, проведем их сравнение. В нервной ткани содержатся нейроны и нейроглия. Подробно рассмотрим строение и функции нейрона.

Благодаря своему строению нейрон является уникальной клеткой с высокой специализацией. Он не только проводит электрические импульсы, но и генерирует их. В ходе онтогенеза нейроны утратили возможность размножаться. При этом в организме присутствуют разновидности нейронов, каждой из которых отводится своя функция.

Нейроны покрыты крайне тонкой и при этом очень чувствительной мембраной. Ее называют нейролеммой. Все нервные волокна, а точнее их аксоны, покрыты миелином. Миелиновая оболочка состоит из глиальных клеток. Контакт между двумя нейронами называется синапс.

Строение

Внешне нейроны очень необычны. У них есть отростки, количество которых может варьироваться от одного до множества. Каждый участок выполняет свою функцию. По форме нейрон напоминает звезду, которая находится в постоянном движении. Его формируют:

  • сома (тело);
  • дендриты и аксоны (отростки).

Аксон и дендрит есть в строении любого нейрона взрослого организма. Именно они проводят биоэлектрические сигналы, без которых не могут происходить никакие процессы в человеческом теле.

Выделяют разные виды нейронов. Их отличие кроется в форме, размере, количестве дендритов. Мы подробно рассмотрим строение и виды нейронов, разделение их на группы, проведем сравнение типов. Зная виды нейронов и их функции, легко понять, как устроен мозг и ЦНС.

Анатомия невронов отличается сложностью. Каждый вид имеет свои особенности строения, свойства. Ими заполнено все пространство головного и спинного мозга. В теле каждого человека встречается несколько видов. Они могут участвовать в разных процессах. При этом данные клетки в процессе эволюции утратили способность к делению. Их количество и связь относительно стабильны.

Нейрон – это конечный пункт, который подает и принимает биоэлектрический сигнал. Эти клетки обеспечивают абсолютно все процессы в теле и имеют первостепенную важность для организма.

В теле нервных волокон содержится нейроплазма и чаще всего одно ядро. Отростки специализируются на определенных функциях. Они делятся на два вида – дендриты и аксоны. Название дендритов связано с формой отростков. Они действительно похожи на дерево, которое сильно ветвится. Размер отростков – от пары микрометров до 1-1,5 м. Клетка с аксоном без дендритов встречается только на стадии эмбрионального развития.

Задача отростков – воспринимать поступающие раздражения и проводить импульс к телу непосредственно нейрона. Аксон нейрона отводит от его тела нервные импульсы. У неврона лишь один аксон, но он может иметь ветви. При этом появляется несколько нервных окончаний (два и больше). Дендритов может быть много.

По аксону постоянно курсируют пузырьки, которые содержат ферменты, нейросекреты, гликопротеиды. Они направляются от центра. Скорость движения некоторых из них – 1-3 мм в сутки. Такой ток называют медленным. Если же скорость движения 5-10 мм в час, подобный ток относят к быстрому.

Если веточки аксона отходят от тела неврона, то дендрит ветвится. У него много веточек, а конечные являются самыми тонкими. В среднем насчитывается 5-15 дендритов. Они существенно увеличивают поверхность нервных волокон. Именно благодаря дендритам, невроны легко контактируют с другими нервными клетками. Клетки с множеством дендритов называют мультиполярными. Их в мозге больше всего.

А вот биполярные располагаются в сетчатке и аппарате внутреннего уха. У них лишь один аксон и дендрит.

Не существует нервных клеток, у которых вовсе нет отростков. В организме взрослого человека присутствуют невроны, у которых минимум есть по одному аксону и дендриту. Лишь у нейробластов эмбриона есть единственный отросток – аксон. В будущем на смену таким клеткам приходят полноценные.

В нейронах, как и во множестве других клеток, присутствуют органеллы. Это постоянные составляющие, без которых они не способны существовать. Органеллы расположены глубоко внутри клеток, в цитоплазме.

У невронов есть крупное круглое ядро, в котором содержится деконденсированный хроматин. В каждом ядре имеется 1-2 довольно крупных ядрышка. В ядрах в большинстве случаев содержится диплоидный набор хромосом. Задача ядра – регулировать непосредственный синтез белков. В нервных клетках синтезируется много РНК и белков.

Нейроплазма содержит развитую структуру внутреннего метаболизма. Тут много митохондрий, рибосом, есть комплекс Гольджи. Также есть субстанция Ниссля, которая синтезирует белок нервных клеток. Данная субстанция находится вокруг ядра, а также на периферии тела, в дендритах. Без всех этих компонентов не получится передать или принять биоэлектрический сигнал.

В цитоплазме нервных волокон имеются элементы опорно-двигательной системы. Они располагаются в теле и отростках. Нейроплазма постоянно обновляет свой белковый состав. Она перемещается двумя механизмами – медленным и быстрым.

Постоянное обновление белков в невронах можно рассматривать, как модификацию внутриклеточной регенерации. Популяция их при этом не меняется, так как они не делятся.

Форма

У невронов могут быть разные формы тела: звездчатые, веретенообразные, шаровидные, в форме груши, пирамиды и т.д. Они составляют различные отделы головного и спинного мозга:

  • звездчатые – это мотонейроны спинного мозга;
  • шаровидные создают чувствительные клетки спинномозговых узлов;
  • пирамидные составляют кору головного мозга;
  • грушевидные создают ткань мозжечка;
  • веретенообразные входят в состав ткани коры больших полушарий.

Есть и другая классификация. Она делит нейроны по строению отростков и их числу:

  • униполярные (отросток лишь один);
  • биполярные (есть пара отростков);
  • мультиполярные (отростков много).

Униполярные структуры не имеют дендритов, они не встречаются у взрослых, а наблюдаются в ходе развития эмбриона. У взрослых есть псевдоуниполярные клетки, у которых есть один аксон. Он разветвляется на два отростка в месте выхода из клеточного тела.

У биполярных невронов по одному дендриту и аксону. Их можно найти в сетчатке глаз. Они передают импульс от фоторецепторов к ганглионарным клеткам. Именно клетки ганглии образуют зрительный нерв.

Большую часть нервной системы составляют невроны с мультиполярной структурой. У них много дендритов.

Размеры

Разные типы нейронов могут существенно отличаться по размерам (5-120 мкм). Есть очень короткие, а есть просто гигантские. Средний размер – 10-30 мкм. Самые большие из них – мотонейроны (они есть в спинном мозге) и пирамиды Беца (этих гигантов можно найти в больших полушариях мозга). Перечисленные типы нейронов относятся к двигательным или эфферентным. Они столь велики потому, что должны принимать очень много аксонов от остальных нервных волокон.

Удивительно, но отдельные мотонейроны, расположенные в спинном мозге, имеют около 10-ти тыс. синапсисов. Бывает, что длина одного отростка достигает 1-1,5 м.

Классификация по функциям

Существует также классификация нейронов, которая учитывает их функции. В ней выделяют нейроны:

  • чувствительные;
  • вставочные;
  • двигательные.

Благодаря «двигательным» клеткам приказы отправляются к мышцам и железам. Они отправляют импульсы от центра к периферии. А вот по чувствительным клеткам сигнал отправляется от периферии непосредственно к центру.

Итак, нейроны классифицируют по:

  • форме;
  • функциям;
  • числу отростков.

Невроны могут быть не только в головном, но и в спинном мозге. Они также присутствуют в сетчатке глаз. Данные клетки выполняют сразу несколько функций, они обеспечивают:

  • восприятие внешней среды;
  • раздражение внутренней среды.

Нейроны участвуют в процессе возбуждения и торможения мозга. Полученные сигналы отправляются в ЦНС благодаря работе чувствительных нейронов. Тут импульс перехватывается и передается через волокно в нужную зону. Его анализирует множество вставочных нейронов головного или спинного мозга. Дальнейшую работу выполняет двигательный нейрон.

Нейроглия

Невроны не способны делиться, потому и появилось утверждение, что нервные клетки не восстанавливаются. Именно поэтому их следует оберегать с особой тщательностью. С основной функцией «няни» справляется нейроглия. Она находится между нервными волокнами.

Эти мелкие клетки отделяют нейроны друг от друга, удерживают их на своем месте. У них длинный список функций. Благодаря нейроглии сохраняется постоянная система установленных связей, обеспечивается расположение, питание и восстановление нейронов, выделяются отдельные медиаторы, фагоцитируется генетически чужое.

Нервная ткань состоит из нервных клеток (нейронов) и клеток глии . Нервные клетки ответственны за восприятие сигнала, проведение импульса и его реализацию, а глиальные клетки выполняют трофические (питание), опорные функции для нейронов, а также защитные и изолирующие функции для нервных волокон. На всем протяжении своего существования клетки глии сохраняют способность к делению. Нейроны же утрачивают эту способность. Поэтому при заболеваниях, сопровождающихся потерей нервных клеток, глиальные клетки могут замещать нейроны.

Нейроны соединяются между собой посредством синапсов, образуя цепи, или узлы нейронов. Размер и форма нейронов варьируют в широких пределах, однако, основная структура их одинакова.

Строение нейрона

В соответствии с направлением проведения сигнала нервная клетка подразделяется на три сегмента: дендрит, аксон и перикарион (соматическая клетка).

Дендриты представляют собой древовидно ветвящиеся отростки, обладающие специфическими точками контакта (синапсами), которые воспринимают сигналы от других нейронов и передают их в перикарион. Оттуда по осевому цилиндру сигнал передается на воспринимающий орган (например, скелетную мышцу) или на другой нейрон.

Аксон – длинный отросток (до 100 см), окружен особой миелиновой оболочкой Роль миелиновой оболочки заключается в стимуляции передачи сигнала от клетки к клетке.

Перикарион (соматическая клетка ) обладает различной формой и размерами. Наряду с ядром перикарион содержит несколько органелл, а также многочисленные нейротрубочки и нейрофиламенты. Через эти нейротрубочки осуществляется транспорт нерастворимых белков.

По количеству дендритов и типу их ветвления нервные клетки разделяются на несколько типов. Униполярный нейрон обладает одним аксоном. В биполярном нейроне аксон и дендрит отходят от противоположных концов клетки. В ложноуниполярном нейрон образуется из биполярного нейрона путем слияния аксона и дендрита вблизи около тела клетки. В мультиполярном нейроне из клетки выходят многочисленные дендриты вместе с одним аксоном.

Клетки глии (нейроглии)

В соединительной ткани периферической и центральной нервной системы различают следующие типы клеток:
- шванновские клетки (образуют миелиновую оболочку);
- амфициты (образуют оболочку нервных клеток, спинальных ганглий и автономных ганглий);
- астроциты (отчасти выполняют опорную функцию);
- микроглия (обладают способностью к фагоцитозу);
- эпендимоциты (выстилают полости головного и спинного мозга);
- секреторные клетки сосудистого сплетения (вырабатывают жидкость, предохраняющую головной и спинной мозг от механических воздействий).

Нервы

Этот термин используется только для периферической нервной системы. Для головного и спинного мозга применяется название тракт (центральный путь). Нерв состоит из нескольких пучков нервных волокон. В одном нерве могут находиться как чувствительные (афферентные), так и двигательные (эфферентные) волокна. Поэтому такой нерв содержит сотни индивидуальных аксонов, заключенных в миелиновые оболочки, а также дополнительный слой соединительной ткани. В свою очередь, пучки волокон окружены еще одним слоем соединительной ткани. Все оболочки обеспечивают не только механическую защиту нерва, но и служат для питания волокон за счет кровеносных сосудов, находящихся в нерве.

В отличие от аксонов в ЦНС, периферические нервы способны к регенерации после повреждений, даже если нерв перерезан. Это происходит при сшивании концов нерва. После перерезки нерва, в первую очередь, дегенерирует часть аксона, отделенная от тела клетки, а шванновские клетки служат резервом для регенерации аксона. Регенерирующий аксон растет со скоростью 1-2 мм в день в направлении иннервируемого органа (например, мышцы). Для полной реиннервации необходимо несколько месяцев. После ампутации конечности аксоны начинают расти во всех направлениях и образуют пролиферирующую массу, так называемую ампутационную нейрому.

Нервный импульс (потенциал действия)

Способность отвечать возбуждением на внешние сигналы характерна для всех клеток. Быстрая передача сигналов посредством специализированных структур (аксонов) присуща только нервным клеткам. Для нервной системы животных и человека сигнал, или потенциал действия, представляет собой универсальное средство сообщения.

Существенным параметром такой связи является не интенсивность одиночного потенциала действия, а количество полученных, обработанных и переданных нервным волокном сигналов в единицу времени (частота). Таким образом, язык, или код нейрона, выражается частотой сигнала (до 500 импульсов в секунду).

Генерация потенциала действия в нервной клетке зависит от отрицательного потенциала покоя, который характерен почти для всех клеток и выражается разностью электрических потенциалов между наружной клеточной мембраной и содержимым клетки. При возбуждении нервной клетки раздражителями электрической или химической природы происходит кратковременная потеря положительного потенциала на ее мембране, и она заряжается слабо отрицательно. Мембранный потенциал меняется от -60 мВ (потенциал покоя) до +20 мВ. Менее чем за 1 мс исходный потенциал восстанавливается. Поскольку клетка теряет первоначальную поляризацию, этот процесс называется деполяризацией. Возвращение клетки к исходному состоянию носит название реполяризации.

Передача импульса с аксона на другой нейрон происходит через синапс , при участии особых веществ – нейромедиаторов. Они высвобождаются из специальных синаптических пузырьков. Нейромедиаторы диффундируют через синаптическую щель и вызывают деполяризацию постсинаптической мембраны, способствующую дальнейшей передаче импульса.

Нервная ткань является функционально ведущей тканью нервной системы; она состоит из нейронов (нервных клеток), обладающих способностью к выработке и проведению нервных импульсов, и клеток нейроглии (глиоцитов), выполняющих ряд вспомогательных функций и обеспечивающих деятельность нейронов.

Нейроны и нейроглия (за исключением одной из ее разновидностей - микроглии) являются производными нейрального зачатка. Нейральный зачаток обосабливается из эктодермы в ходе процесса нейруляции, при этом выделяются три его компонента: нервная трубка - дает начало нейронам и глии органов центральной нервной системы (ЦНС); нервный гребень - образует нейроны и глию нервных ганглиев и нейральные плакоды - утолщенные участки эктодермы в краниальной части зародыша, дающие начало некоторым клеткам органов чувств.

Нейроны

Нейроны (нервные клетки) - клетки различных размеров, состоящие из клеточного тела (перикариона) и отростков, обеспечивающих проведение нервных импульсов, - дендритов, приносящих импульсы к телу нейрона, и аксона, несущего импульсы от тела нейрона (рис. 98-102).

Классификация нейронов осуществляется по трем видам признаков: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа (см. рис. 98): униполярные, биполярные и мультиполярные. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны, в которых от тела клетки отходит единый вырост, который далее Т-образно делится на два отростка - периферический и центральный. Наиболее распространенным типом нейронов в организме являются мультиполярные.

Функциональная классификация нейронов разделяет их по характеру выполняемой функции (в соответствии с их местом в рефлекторной дуге) на три типа (рис. 119, 120): афферентные (чувствительные, сенсорные), эфферентные (двигательные, мотонейроны) и интернейроны (вставочные). Последние количественно преобладают над нейронами других типов. Нейроны связаны в цепи и сложные системы посредством специализированных межнейрональных контактов - синапсов.

Биохимическая классификация нейронов основана на химической природе нейромедиаторов, ис-

пользуемых ими в синаптической передаче нервных импульсов (выделяют холинергические, адренергические, серотонинергические, дофаминергические, пептидергические и др.).

Функциональная морфология нейрона. Нейрон (перикарион и отростки) окружен плазмолеммой, которая обладает способностью к проведению нервного импульса. Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков).

Ядро нейрона - обычно одно, крупное, округлое, светлое, с мелкодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками (см. рис. 99-102). Эти особенности отражают высокую активность процессов транскрипции в ядре нейрона.

Цитоплазма перикариона нейрона богата органеллами, а его плазмолемма осуществляет рецепторные функции, так как на ней находятся многочисленные нервные окончания (аксо-соматические синапсы), несущие возбуждающие и тормозные сигналы от других нейронов (см. рис. 99). Цистерны хорошо развитой гранулярной эндоплазматической сети часто образуют отдельные комплексы, которые на светооптическом уровне при окраске анилиновыми красителями имеют вид базофильных глыбок (см. рис. 99, 100, 102), в совокупности получивших название хроматофильной субстанции (старое название - тельца Ниссля, тигроидное вещество). Наиболее крупные из них обнаруживаются в мотонейронах (см. рис. 100). Комплекс Гольджи хорошо развит (впервые описан именно в нейронах) и состоит из множественных диктиосом, расположенных обычно вокруг ядра (см. рис. 101 и 102). Митохондрии - очень многочисленны и обеспечивают значительные энергетические потребности нейрона, лизосомальный аппарат обладает высокой активностью. Цитоскелет нейронов хорошо развит и включает все элементы - микротрубочки (нейротрубочки), микрофиламенты и промежуточные филаменты (нейрофиламенты). Включения в цитоплазме нейрона представлены липидными каплями, гранулами липофусцина (пигмента старения, или изнашивания), (нейро)меланина - в пигментированных нейронах.

Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендритные синапсы - см. рис. 99). В большинстве случаев дендриты многочисленны, имеют относительно небольшую длину и сильно вет-

вятся вблизи тела нейрона. Крупные стволовые дендриты содержат все виды органелл, по мере снижения их диаметра из них исчезают элементы комплекса Гольджи, а цистерны гранулярной эндоплазматической сети (хроматофильная субстанция) сохраняются. Нейротрубочки и нейрофиламенты многочисленны и располагаются параллельными пучками.

Аксон - длинный отросток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). Он отходит от утолщенного участка тела нейрона, не содержащего хроматофильной субстанции, - аксонного холмика, в котором генерируются нервные импульсы; почти на всем протяжении он покрыт глиальной оболочкой (см. рис. 99). Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, а ближе к периферии располагаются пучки микротрубочек, цистерны гранулярной эндоплазматической сети, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Хроматофильная субстанция в аксоне отсутствует. Аксон может по своему ходу давать ответвления (коллатерали аксона), которые обычно отходят от него под прямым углом. В конечном участке аксон нередко распадается на тонкие веточки (терминальное ветвление). Аксон заканчивается специализированными терминалями (нервными окончаниями) на других нейронах или клетках рабочих органов.

Синапсы

Синапсы - специализированные контакты, осуществляющие связь между нейронами, подразделяются на электрические и химические.

Электрические синапсы у млекопитающих сравнительно редки; они имеют строение щелевых соединений (см. рис. 30), в которых мембраны синаптически связанных клеток (пре- и постсинаптическая) разделены узким промежутком, пронизанным коннексонами.

Химические синапсы (везикулярные синапсы) - наиболее распространенный тип у млекопитающих. Химический синапс состоит из трех компонентов: пресинаптической части, постсинаптической части и синаптической щели между ними (рис. 103).

Пресинаптическая часть имеет вид расширения - терминального бутона и включает: синаптические пузырьки, содержащие нейромедиатор, митохондрии, агранулярную эндоплазматическую сеть, нейротрубочки, нейрофиламенты, пресинап тическую мембрану с пресинаптическим

уплотнением, связанным с пресинаптической решеткой.

Постсинаптическая часть представлена постсинаптической мембраной, содержащей особые комплексы интегральных белков - синаптические рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена за счет скопления под ней плотного филаментозного белкового материала (постсинаптическое уплотнение).

Синаптическая щель содержит вещество синаптической щели, которое часто имеет вид поперечно расположенных гликопротеиновых филаментов, обеспечивающих адгезивные связи пре- и постсинаптической частей, а также направленную диффузию нейромедиатора.

Механизм передачи нервного импульса в химическом синапсе: под влиянием нервного импульса синаптические пузырьки выделяют в синаптическую щель содержащийся в них нейромедиатор, который, связываясь с рецепторами в постсинаптической части, вызывает изменения ионной проницаемости ее мембраны, что приводит к ее деполяризации (в возбуждающих синапсах) или гиперполяризации (в тормозных синапсах).

Нейроглия

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. В мозгу человека содержание глиальных клеток (глиоцитов) в 5-10 раз превышает число нейронов.

Классификация глии выделяет макроглию и микроглию. Макроглия подразделяется на эпендимную глию, астроцитарную глию (астроглию) и олигодендроглию (рис. 104).

Эпендимная глия (эпендима) образована клетками кубической или столбчатой формы (эпендимоцитами), которые в виде однослойных пластов выстилают полости желудочков головного мозга и центрального канала спинного мозга (см. рис. 104, 128). Ядро этих клеток содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность части эпендимоцитов несет реснички, которые своими движениями перемещают спинномозговую жидкость, а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной глиальной пограничной мембраны (краевой глии).

Специализированными клетками эпендимной глии являются танициты и эпендимоциты сосудистого сплетения (сосудистый эпителий).

Танициты имеют кубическую или призматическую форму, их апикальная поверхность

покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре (см. рис. 104). Танициты поглощают вещества из спинномозговой жидкости и транспортируют их по своему отростку в просвет сосудов, обеспечивая тем самым связь между спинномозговой жидкостью в просвете желудочков мозга и кровью.

Хороидные эпендимоциты (эпендимоциты сосудистого сплетения) образуют сосудистый эпителий в желудочках головного мозга, входят в состав гемато-ликворного барьера и участвуют в образовании спинномозговой жидкости. Это - клетки кубической формы (см. рис. 104) с многочисленными микроворсинками на выпуклой апикальной поверхности. Они располагаются на базальной мембране, отделяющей их от подлежащей рыхлой соединительной ткани мягкой мозговой оболочки, в которой находится сеть фенестрированных капилляров.

Функции эпендимной глии: опорная (за счет базальных отростков); образование барьеров (нейроликворного и гемато-ликворного), ультрафильтрация компонентов спинномозговой жидкости.

Астроглия представлена астроцитами - крупными клетками со светлым овальным ядром, умеренно развитыми органеллами и многочисленными промежуточными филаментами, содержащими особый глиальный фибриллярный кислый белок (маркер астроцитов). На концах отростков имеются пластинчатые расширения, которые, соединяясь друг с другом, окружают в виде мембран сосуды (сосудистые ножки) или нейроны (см. рис. 104). Выделяют протоплазматические астроциты (с многочисленными разветвленными короткими толстыми отростками; встречаются преимущественно в сером веществе ЦНС) и фиброзные (волокнистые) астроциты (с длинными тонкими умеренно ветвящимися отростками; располагаются, в основном, в белом веществе).

Функции астроцитов: разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов). Участвуют в образовании периваскулярных глиальных пограничных мембран, формируя основу гематоэнцефалического барьера. Совместно с другими элементами глии образуют поверхностную глиальную пограничную мембран у (краевую глию) мозга, расположенную под мягкой мозговой оболочкой, а также перивентрикулярную пограничную глиальную мембрану под слоем эпендимы, участвующей в образовании нейро-ликворного барьера. Отростки астроцитов окружают тела нейронов и области синапсов. Астроциты вы-

полняют также метаболическую и регуляторную функции (регулируя концентрацию ионов и нейромедиаторов в микроокружении нейронов), они участвуют в различных защитных реакциях при повреждении нервной ткани.

Олигодендроглия - обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов (сателлитные, или перинейрональные, олигодендроциты), входят в состав нервных волокон и нервных окончаний (в периферической нервной системе эти клетки называют шванновскими клетками, или нейролеммоцитами) - см. рис. 104. Клетки олигодендроглии встречаются в ЦНС (сером и белом веществе) и периферической нервной системе; характеризуются темным ядром, плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.

Функции олигодендроглии: барьерная, метаболическая (регулирует метаболизм нейронов, захватывает нейромедиаторы), образование оболочек вокруг отростков нейронов.

Микроглия - совокупность мелких удлиненных подвижных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся располагающимися преимущественно вдоль капилляров в центральной нервной системе (см. рис. 104). В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярных макрофагов мозга) и относятся к макрофагально-моноцитарной системе. Для них характерны ядра с преобладанием гетерохроматина и высокое содержание лизосом в цитоплазме. При активации утрачивают отростки, округляются и усиливают фагоцитоз, захватывают и представляют антигены, секретируют ряд цитокинов.

Функция микроглии - защитная (в том числе иммунная); ее клетки играют роль специализированных макрофагов нервной системы.

Нервные волокна

Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают два вида нервных волокон - безмиелиновые и миелиновые. Оба вида состоят из центрально лежащего отростка нейрона, окруженного оболочкой из клеток олигодендроглии (в периферической нервной системе они называются шванновскими клетками (нейролеммоцитами).

Миелиновые нервные волокна встречаются в ЦНС и периферической нервной системе и ха-

рактеризуются высокой скоростью проведения нервных импульсов. Они обычно толще безмиелиновых и содержат отростки нейронов большего диаметра. В таком волокне отросток нейрона окружен миелиновой оболочкой, вокруг которой располагается тонкий слой, включающий цитоплазму и ядро нейролеммоцита - нейролемма (рис. 105- 108). Снаружи волокно покрыто базальной мембраной. Миелиновая оболочка содержит высокие концентрации липидов и интенсивно окрашивается осмиевой кислотой, имея под световым микроскопом вид однородного слоя (см. рис. 105), однако под электронным микроскопом обнаруживается, что она состоит из многочисленных мембранных витков пластинок миелина (см. рис. 107 и 108). Участки миелиновой оболочки, в которых сохраняются промежутки между витками миелина, заполненные цитоплазмой нейролеммоцита и поэтому не окрашиваемые осмием, имеют вид насечек миелина (см. рис. 105-107). Миелиновая оболочка отсутствует в участках, соответствующих границе соседних нейролеммоцитов - узловых перехватах (см. рис. 105-107). При электронной микроскопии в области перехвата выявляются узловое расширение аксона и узловые интердигитации цитоплазмы соседних нейролеммоцитов (см. рис. 107). Рядом с узловым перехватом (паранодальная область) миелиновая оболочка охватывает аксон в виде терминальной пластинчатой манжетки. По длине волокна миелиновая оболочка имеет прерывистый ход; участок между двумя узловыми перехватами (межузловой сегмент) соответствует длине одного нейролеммоцита (см. рис. 105 и 106).

Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе автономной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов. Они образованы тяжами нейролеммоцитов, в цитоплазму которых погружен проходящий сквозь них аксон, связанный с плазмолеммой нейролеммоцитов дупликатурой плазмолеммы - мезаксоном. Нередко в цитоплазме одного нейролеммоцита могут находиться до 10-20 осевых цилиндров. Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной (рис. 109).

Нервные окончания

Нервные окончания - концевые аппараты нервных волокон. По функции они разделяются на три группы:

1) межнейрональные контакты (синапсы) - обеспечивают функциональную связь между нейронами (см. выше);

2)рецепторные (чувствительные) окончания - воспринимают раздражения из внешней и внутренней среды, имеются на дендритах;

3)эфферентные (эффекторные) окончания - передают сигналы из нервной системы на исполнительные органы (мышцы, железы), имеются на аксонах.

Рецепторные (чувствительные) нервные окончания в зависимости от природы регистрируемого раздражения подразделяются (в соответствии с физиологической классификацией) на механорецепторы, хеморецепторы, терморецепторы и болевые рецепторы (ноцицепторы). Морфологическая классификация чувствительных нервных окончаний выделяет свободные и несвободны е чувствительные нервные окончания; последние включают инкапсулированные и неинкапсулированные окончания (рис. 110).

Свободные чувствительные нервные окончания состоят только из терминальных ветвлений дендрита чувствительного нейрона (см. рис. 110). Они встречаются в эпителии, а также в соединительной ткани. Проникая в эпителиальный пласт, нервные волокна утрачивают миелиновую оболочку и нейролемму, а базальная мембрана их нейролеммоцитов сливается с эпителиальной. Свободные нервные окончания обеспечивают восприятие температурных (тепловых и холодовых), механических и болевых сигналов.

Несвободные чувствительные нервные окончания

Несвободные неинкапсулированные нервные окончания состоят из ветвлений дендритов, окруженных леммоцитами. Они встречаются в соединительной ткани кожи (дерме), а также собственной пластинки слизистых оболочек.

Несвободные инкапсулированные нервные окончания весьма разнообразны, но имеют единый общий план строения: их основу составляют ветвления дендрита, окруженные нейролеммоцитами, снаружи они покрыты соединительнотканной (фиброзной) капсулой (см. рис. 110). Все они являются механорецепторами, располагаются в соединительной ткани внутренних органов, кожи и слизистых оболочек, капсулах суставов. К этому виду нервных окончаний относят тактильные тельца (осязательные тельца Мейснера), веретеновидные чувст вительные тельца (колбы Краузе), пластинчатые тельца (Фатера-Пачини), чувствительные

тельца (Руффини). Самыми крупными из них являются пластинчатые тельца, которые содержат слоистую наружную колбу (см. рис. 110), состоящую из 10-60 концентрических пластин, между которыми имеется жидкость. Пластины образованы уплощенными фибробластами (по другим сведениям - нейролеммоцитами). Помимо рецепции механических стимулов, колбы Краузе, возможно, воспринимают также холод, а тельца Руффини - тепло.

Нейро-мышечные веретена - рецепторы растяжения волокон поперечнополосатых мышц - сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией (рис. 111). Нейромышечное веретено располагается параллельно ходу волокон мышцы, называемых экстрафузальными. Оно покрыто соединительнотканной капсулой, внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов: волокна с ядерным мешочком (скоплением ядер в расширенной центральной части волокна) и волокна с ядерной цепочкой (расположением ядер в виде цепочки в центральной части). Чувствительные нервные волокна образуют анулоспиральные нервные окончания на центральной части интрафузальных волокон и гроздевидные нервные окончания - у их краев. Двигательные нервные волокна - тонкие, образуют мелкие нейро-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Сухожильные органы, или нейро-сухожильные веретена (Гольджи), располагаются в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждый сухожильный орган образован соединительнотканной капсулой, которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых нейролеммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные (эффекторные) нервные окончания в зависимости от природы иннервируемого органа подразделяются на двигательные и секре-

торные. Двигательные окончания имеются в поперечнополосатых и гладких мышцах, секреторные - в железах.

Нейро-мышечное соединение (нейро-мышечный синапс, двигательная концевая пластинка) - двигательное окончание аксона мотонейрона на волокнах поперечнополосатых скелетных мышц - по строению сходно с межнейрональными синапсами и состоит из трех частей (рис. 112 и 113):

Пресинаптическая часть образована концевыми ветвлениями аксона, который вблизи мышечного волокна утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными нейролеммоцитами (клетками телоглии) и базальной мембраной. В терминалях аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель (первичная) располагается между плазмолеммой ветвлений аксона и мышечным волокном; она содержит материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели), которые заполнены материалом, являющимся продолжением базальной мембраны.

Двигательные нервные окончания в сердечной и гладких мышцах имеют вид варикозно расширенных участков ветвей аксонов, которые содержат многочисленные синаптические пузырьки и митохондрии и отделены от мышечных клеток широкой щелью.

Секреторные нервные окончания (нейро-железистые синапсы) представляют собой конечные участки тонких аксонных веточек. Одни из них, утрачивая оболочку из нейролеммоцитов, проникают сквозь базальную мембрану и располагаются между секреторными клетками, заканчиваясь терминальными варикозными расширениями, содержащими пузырьки и митохондрии (экстрапаренхимный, или гиполеммальный, синапс). Другие не проникают сквозь базальную мембрану, образуя варикозные расширения вблизи секреторных клеток (паренхимный, или эпилеммальный синапс).

НЕРВНАЯ ТКАНЬ

Рис. 98. Морфологическая классификация нейронов (схема):

A - униполярный нейрон (амакринная клетка сетчатки глаза); Б - биполярный нейрон (вставочный нейрон сетчатки глаза); В - псевдоуниполярный нейрон (афферентная клетка спинномозгового узла); Г1-Г3 - мультиполярные нейроны: Г1 - мотонейрон спинного мозга; Г2 - пирамидный нейрон коры полушарий большого мозга, Г3 - клетка Пуркинье коры полушарий мозжечка.

1 - перикарион, 1.1 - ядро; 2 - аксон; 3 - дендрит(ы); 4 - периферический отросток; 5 - центральный отросток.

Примечание: функциональная классификация нейронов, согласно которой эти клетки подразделяются на афферентные (чувствительные, сенсорные), вставочные (интернейроны) и эфферентные (мотонейроны), основывается на их положении в рефлекторных дугах (см. рис. 119 и 120)

Рис. 99. Строение мультиполярного нейрона (схема):

1 - тело нейрона (перикарион): 1.1 - ядро, 1.1.1 - хроматин, 1.1.2 - ядрышко, 1.2 - цитоплазма, 1.2.1 - хроматофильная субстанция (тельца Ниссля); 2 - дендриты; 3 - аксонный холмик; 4 - аксон: 4.1 - начальный сегмент аксона, 4.2 - коллатераль аксона, 4.3 - нейро-мышечный синапс (двигательное нервное окончание на волокне поперечнополосатой мышцы); 5 - миелиновая оболочка; 6 - узловые перехваты; 7 - межузловой сегмент; 8 - синапсы: 8.1 - аксо-аксональный синапс, 8.2 - аксо-дендритные синапсы, 8.3 - аксо-соматические синапсы

Рис. 100. Мультиполярный двигательный нейрон спинного мозга. Глыбки хроматофильной субстанции (тельца Ниссля) в цитоплазме

Окраска: тионин

1 - тело нейрона (перикарион): 1.1 - ядро, 1.2 - хроматофильная субстанция; 2 - начальные отделы дендритов; 3 - аксонный холмик; 4 - аксон

Рис. 101. Псевдоуниполярный чувствительный нейрон чувствительного узла спинномозгового нерва. Комплекс Гольджи в цитоплазме

Окраска: азотнокислое серебро-гематоксилин

1 - ядро; 2 - цитоплазма: 2.1 - диктиосомы (элементы комплекса Гольджи)

Рис. 102. Ультраструктурная организация нейрона

Рисунок с ЭМФ

1 - тело нейрона (перикарион): 1.1 - ядро, 1.1.1 - хроматин, 1.1.2 - ядрышко, 1.2 - цитоплазма: 1.2.1 - хроматофильная субстанция (тельца Ниссля) - агрегаты цистерн гранулярной эндоплазматической сети, 1.2.2 - комплекс Гольджи, 1.2.3 - лизосомы, 1.2.4 - митохондрии, 1.2.5 - элементы цитоскелета (нейротрубочки, нейрофиламенты); 2 - аксонный холмик; 3 - аксон: 3.1 - коллатераль аксона, 3.2 - синапс; 4 - дендриты

Рис. 103. Ультраструктурная организация химического межнейронального синапса (схема)

1 - пресинаптическая часть: 1.1 - синаптические пузырьки, содержащие нейромедиатор, 1.2 - митохондрии, 1.3 - нейротрубочки, 1.4 - нейрофиламенты, 1.5 - цистерна гладкой эндоплазматической сети, 1.6 - пресинаптическая мембрана, 1.7 - пресинаптическое уплотнение (пресинаптическая решетка); 2 - синаптическая щель: 2.1 - интрасинаптические филаменты; 3 - постсинаптическая часть: 3.1 - постсинаптическая мембрана, 3.2 - постсинаптическое уплотнение

Рис. 104. Различные виды глиоцитов в центральной (ЦНС) и периферической (ПНС) нервной системе

А - В - макроглия, Г - микроглия;

A1, А2, А3 - эпендимная глия (эпендима); Б1, Б2 - астроциты; В1, В2, В3 - олигодендроциты; Г1, Г2 - клетки микроглии

A1 - клетки эпендимной глии (эпендимоциты): 1 - тело клетки: 1.1 - реснички и микроворсинки на апикальной поверхности, 1.2 - ядро; 2 - базальный отросток. Эпендима выстилает полость желудочков головного мозга и центрального канала спинного мозга.

А2 - таницит (специализированная клетка эпендимы): 1 - тело клетки, 1.1 - микроворсинки и отдельные реснички на апикальной поверхности, 1.2 - ядро; 2 - базальный отросток: 2.1 - уплощенный вырост отростка («концевая ножка») на кровеносном капилляре (красная стрелка), через которую в кровь транспортируются вещества, поглощенные апикальной поверхностью клетки из спинномозговой жидкости (СМЖ). A3 - хороидные эпендимоциты (клетки сосудистых сплетений, участвующие в образовании СМЖ): 1 - ядро; 2 - цитоплазма: 2.1 - микроворсинки на апикальной поверхности клетки, 2.2 - базальный лабиринт. Вместе со стенкой фенестрированного кровеносного капилляра (красная стрелка) и лежащей между ними соединительной тканью эти клетки образуют гемато-ликворный барьер.

Б1 - протоплазматический астроцит: 1 - тело клетки: 1.1 - ядро; 2 - отростки: 2.1 - пластинчатые расширения отростков - образуют вокруг кровеносных капилляров (красная стрелка) периваскулярную пограничную мембрану (зеленая стрелка) - основной компонент гемато-энцефалического барьера, на поверхности мозга - поверхностную пограничную глиальную мембрану (желтая стрелка), покрывают тела и дендриты нейронов в ЦНС (не показано).

Б2 - волокнистый астроцит: 1 - тело клетки: 1.1 - ядро; 2 - отростки клетки (пластинчатые расширения отростков не показаны).

В1 - олигодендроцит (олигодендроглиоцит) - клетка ЦНС, образующая миелиновую оболочку вокруг аксона (голубая стрелка): 1 - тело олигодендроцита: 1.1 - ядро; 2 - отросток: 2.1 - миелиновая оболочка.

В2 - клетки-сателлиты - олигодендроциты ПНС, образующие глиальную оболочку вокруг тела нейрона (жирная черная стрелка): 1 - ядро сателлитной глиальной клетки; 2 - цитоплазма сателлитной глиальной клетки.

В3 - нейролеммоциты (шванновские клетки) - олигодендроциты ПНС, образующие миелиновую оболочку вокруг отростка нейрона (голубая стрелка): 1 - ядро нейролеммоцита; 2 - цитоплазма нейролеммоцита; 3 - миелиновая оболочка.

Г1 - клетка микроглии (микроглиоцит, или клетка Ортега) в неактивном состоянии: 1 - тело клетки, 1.1 - ядро; 2 - ветвящиеся отростки.

Г2 - клетка микроглии (микроглиоцит, или клетка Ортега) в активированном состоянии: 1 - ядро; 2 - цитоплазма, 2.1 - вакуоли

Пунктирной стрелкой показаны фенотипические взаимопревращения клеток микроглии

Рис. 105. Изолированные миелиновые нервные волокна

Окраска: осмирование

1 - отросток нейрона (аксон); 2 - миелиновая оболочка: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма; 4 - узловой перехват (перехват Ранвье); 5 - межузловой сегмент

Рис. 106. Миелиновое нервное волокно. Продольный срез (схема):

1 - отросток нейрона (аксон); 2 - миелиновая оболочка: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма: 3.1 - ядро нейролеммоцита (шванновской клетки), 3.2 - цитоплазма нейролеммоцита; 4 - узловой перехват (перехват Ранвье); 5 - межузловой сегмент; 6 - базальная мембрана

Рис. 107. Ультраструктура миелинового нервного волокна. Продольный срез (схема):

1 - отросток нейрона (аксон): 1.1 - узловое расширение аксона; 2 - витки миелиновой оболочки: 2.1 - насечки миелина (Шмидта-Лантермана); 3 - нейролемма: 3.1 - ядро нейролеммоцита (шванновской клетки), 3.2 - цитоплазма нейролеммоцита, 3.2.1 - узловая интердигитация соседних нейролеммоцитов, 3.2.2 - паранодальные карманы нейролеммоцитов, 3.2.3 - плотные пластинки (связывающие паранодальные карманы с аксолеммой), 3.2.4 - внутренний (вокругаксональный) листок цитоплазмы нейролеммоцита; 4 - узловой перехват (перехват Ранвье)

Рис. 108. Ультраструктурная организация миелинового нервного волокна (поперечный срез)

Рисунок с ЭМФ

1 - отросток нейрона; 2 - слой миелина; 3 - нейролемма: 3.1 - ядро нейролеммоцита, 3.2 - цитоплазма нейролеммоцита; 4 - базальная мембрана

Рис. 109. Ультраструктурная организация безмиелинового нервного волокна кабельного типа (поперечный срез)

Рисунок с ЭМФ

1 - отростки нейронов; 2 - нейролеммоцит: 2.1 - ядро, 2.2 - цитоплазма, 2.3 - плазмолемма; 3 - мезаксон; 4 - базальная мембрана

Рис. 110. Чувствительные нервные окончания (рецепторы) в эпителии и соединительной ткани

Окраска: А-В - азотнокислое серебро; Г - гематоксилин-эозин

A - свободные нервные окончания в эпителии, Б, В, Г - инкапсулированные чувствительные нервные окончания в соединительной ткани: Б - тактильное тельце (осязательное тельце Мейснера), В - веретеновидное чувствительное тельце (колба Краузе), Г - пластинчатое тельце (Фатера-Пачини)

1 - нервное волокно: 1.1 - дендрит, 1.2 - миелиновая оболочка; 2 - внутренняя колба: 2.1 - терминальные ветвления дендрита, 2.2 - нейролеммоциты (шванновские клетки); 3 - наружная колба: 3.1 - концентрические пластины, 3.2 - фиброциты; 4 - соединительнотканная капсула

Рис. 111. Чувствительное нервное окончание (рецептор)в скелетной мышце - нейро-мышечное веретено

1 - экстрафузальные мышечные волокна; 2 - соединительнотканная капсула; 3 - интрафузальные мышечные волокна: 3.1 - мышечные волокна с ядерным мешочком, 3.2 - мышечные волокна с ядерной цепочкой; 4 - окончания нервных волокон: 4.1 - анулоспиральные нервные окончания, 4.2 - гроздевидные нервные окончания.

Двигательные нервные волокна и образованные ими нейро-мышечные синапсы на интрафузальных мышечных волокнах не показаны

Рис. 112. Двигательное нервное окончание в скелетной мышце (нейро-мышечный синапс)

Окраска: нитрат серебра-гематоксилин

1 - миелиновое нервное волокно; 2 - нейро-мышечный синапс: 2.1 - концевые ветвления аксона, 2.2 - видоизмененные нейролеммоциты (клетки телоглии); 3 - волокна скелетной мышцы

Рис. 113. Ультраструктурная организация двигательного нервного окончания в скелетной мышце (нейро-мышечного синапса)

Рисунок с ЭМФ

1 - пресинаптическая часть: 1.1 - миелиновая оболочка, 1.2 - нейролеммоциты, 1.3 - клетки телоглии, 1.4 - базальная мембрана, 1.5 - концевые ветвления аксона, 1.5.1 - синаптические пузырьки, 1.5.2 - митохондрии, 1.5.3 - пресинаптическая мембрана; 2 - первичная синаптическая щель: 2.1 - базальная мембрана, 2.2 - вторичные синаптические щели; 3 - постсинаптическая часть: 3.1 - постсинаптическая сарколемма, 3.1.1 - складки сарколеммы; 4 - волокно скелетной мышцы

Поделиться: